保险与再保险及市场对冲稳健均衡策略

江五元, 杨招军

系统科学与数学 ›› 2023, Vol. 43 ›› Issue (5) : 1331-1345.

PDF(641 KB)
PDF(641 KB)
系统科学与数学 ›› 2023, Vol. 43 ›› Issue (5) : 1331-1345. DOI: 10.12341/jssms22609

保险与再保险及市场对冲稳健均衡策略

    江五元1, 杨招军2,3
作者信息 +

Robust Equilibrium Strategies for Insurance and Reinsurance with Market Hedging

    JIANG Wuyuan1, YANG Zhaojun2,3
Author information +
文章历史 +

摘要

假设保险公司的资本盈余过程服从复合 Poisson 风险跳过程,保险公司通过向再保险公司购买比例再保险来分散保险风险,保险公司和再保险公司均基于方差原则收取保险费率.两个公司都可以投资于金融市场,其中风险资产的价格过程服从几何布朗运动.假设保险公司和再保险公司都是模糊厌恶的且具有指数效用函数,基于保险公司与再保险公司加权终期财富效用最大化目标,利用动态规划原理,得到了两公司的稳健均衡比例再保险和投资组合策略的解析表达式.分析了均衡条件下的风险投资,再保险价格与保险公司自保险比例受不同参变量影响的变化特征.

Abstract

This paper assumes that the capital surplus process of insurance companies follows a compound Poisson risk jump process. Insurance companies distribute insurance risks by purchasing proportional reinsurance from reinsurance companies, and all the companies charge premium rates based on the principle of variance. Both the companies can invest in financial markets, where the price process of the risky assets follows a Geometric Brownian motion. Under the assumption that insurance companies and reinsurance companies are both ambiguity-averse and have exponential utility functions, the objectives of insurer and reinsurer are to maximize the utility of their weighted terminal wealth. By using the principle of dynamic programming, the analytic expressions of the two types of companies' robust equilibrium proportional reinsurance and portfolio strategy are obtained. Finally, the changing characteristics of the risk investment, the reinsurance price and the self-insurance ratios of the insurance company affected by different parameter variables under the equilibrium condition are analyzed.

关键词

几何布朗运动 / 模糊厌恶 / 保险与再保险 / 市场组合 / 稳健均衡策略

Key words

Geometric Brownian motion / ambiguity-averse / insurance and reinsurance / market portfolio / robust equilibrium strategies

引用本文

导出引用
江五元 , 杨招军. 保险与再保险及市场对冲稳健均衡策略. 系统科学与数学, 2023, 43(5): 1331-1345. https://doi.org/10.12341/jssms22609
JIANG Wuyuan , YANG Zhaojun. Robust Equilibrium Strategies for Insurance and Reinsurance with Market Hedging. Journal of Systems Science and Mathematical Sciences, 2023, 43(5): 1331-1345 https://doi.org/10.12341/jssms22609
中图分类号: 91B28    91B30   

参考文献

[1] Gu A L, Guo X P, Li Z F, et al. Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model. Insurance:Mathematics and Economics, 2012, 51(3):674-684.
[2] Zhao H, Rong X M, Zhao Y G. Optimal excess-of-loss reinsurance and investment problem for an insurer with jump-diffusion risk process under the Heston model. Insurance:Mathematics and Economics, 2013, 53(3):504-514.
[3] A C X, Li Z F. Optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston's SV model. Insurance:Mathematics and Economics, 2015, 61:181-196.
[4] Li D P, Li D C, Young V R. Optimality of excess-loss reinsurance under a mean-variance criterion. Insurance:Mathematics and Economics, 2017, 75:82-89.
[5] Gu M D, Yang Y P, Li S D, et al. Constant elasticity of variance model for proportional reinsurance and investment strategies. Insurance:Mathematics and Economics, 2010, 46(3):580-587.
[6] Xiong J, Zhang S Q, Zhao H, et al. Optimal proportional reinsurance and investment problem with jump-diffusion risk process under effect of inside information. Frontiers of Mathematics in China, 2014, 9(4):965-982.
[7] Peng X C, Chen F G, Hu Y J. Optimal investment, consumption and proportional reinsurance under model uncertainty. Insurance:Mathematics and Economics, 2014, 59:222-234.
[8] Liang Z X, Song M. Time-consistent reinsurance and investment strategies for mean-variance insurer under partial information. Insurance:Mathematics and Economics, 2015, 65:66-76.
[9] Peng X C, Wei L X, Hu Y J. Optimal investment, consumption and proportional reinsurance for an insurer with option type payoff. Insurance:Mathematics and Economics, 2014, 59:78-86.
[10] Zhao J M, Deng Y C, Huang Y, et al. Optimal proportional reinsurance and investment for a constant elasticity of variance model under variance principle. Acta Mathematica Scientia, 2015, 35B(2):303-312.
[11] Zhu H M, Huang Y, Zhao J M, et al. Optimal proportional reinsurance and investment problem with constraints on risk control in a general jump-diffusion financial market. Anziam Journal, 2016, 57(3):352-368.
[12] Liang Z B, Yuen K C, Guo J Y. Optimal proportional reinsurance and investment in a stock market with Ornstein-Uhlenbeck process. Insurance:Mathematics and Economics, 2011, 49(2):207-215.
[13] Lakner P. Utility maximization with partial information. Stochastic Processes and Their Applications, 1995, 56(2):247-273.
[14] Lakner P. Optimal trading strategy for an investor:The case of partial information. Stochastic Processes and Their Applications, 1998, 76(1):77-97.
[15] 何志强, 陈凤娥, 彭幸春. 均值-方差准则下保险公司带内幕信息的时间一致投资-再保险策略. 系统科学与数学, 2022, 42(9):2432-2447. (He Z Q, Chen F E, Peng X C. Time-consistent investment-reinsurance strategies for a mean-variance insurer with inside information. Journal of Systems Science and Mathematical Sciences, 2022, 42(9):2432-2447.)
[16] Bensoussan A, Siu C C, Yam S C P, et al. A class of non-zero-sum stochastic differential investment and reinsurance games. Automatica, 2014, 50(8):2025-2037.
[17] Deng C, Zeng X D, Zhu H M. Non-zero-sum stochastic differential reinsurance and investment games with default risk. European Journal of Operational Research, 2018, 264(3):1144-1158.
[18] 朱怀念, 张成科, 曹铭. Heston模型下保险公司和再保险公司的投资与再保险博弈. 中国管理科学, 2021, 29(6):48-59. (Zhu H N, Zhang C K, Cao M. Investment and reinsurance games between an insurer and reinsurer under the Heston model. Chinese Journal of Management Science, 2021, 29(6):48-59.)
[19] Zhu J Q, Guan G H, Li S H. Time-consistent non-zero-sum stochastic differential reinsurance and investment game under default and volatility risks. Journal of Computational and Applied Mathematics, 2020, 374:1-18.
[20] Wang N, Zhang N, Jin Z, et al. Robust non-zero-sum investment and reinsurance game with default risk. Insurance:Mathematics and Economics, 2019, 84:115-132.
[21] Sun Z Y, Zheng X X, Zhang X. Robust optimal investment and reinsurance of an insurer under variance premium principle and default risk. Journal of Mathematical Analysis and Applications, 2017, 446(2):1666-1686.
[22] 杨璐, 张成科, 朱怀念, 等. 基于Heston模型时间一致的资产负债管理鲁棒策略. 中国管理科学, 2021, 29(10):47-57. (Yang L, Zhang C K, Zhu H N, et al. Ambiguity aversion and time-consistent optimal investment for asset-liability management under the Heston model. Chinese Journal of Management Science, 2021, 29(10):47-57.)
[23] Cao J Y, Li D C, Young V R, Zou B. Stackelberg differential game for insurance under model ambiguity. Insurance:Mathematics and Economics, 2022, 106:128-145.
[24] Gu A L, Chen S M, Li Z F, et al. Optimal reinsurance pricing with ambiguity aversion and relative performance concerns in the principal-agent model. Scandinavian Actuarial Journal, 2022, 2022(9):749-774.
[25] Hu D N, Wang H L. Robust reinsurance contract with learning and ambiguity aversion. Scandinavian Actuarial Journal, 2022, 2022(9):794-815.
[26] Grandell J. Aspects of Risk Theory. New York:Springer-Verlag, 1991.
[27] Cyert R M, DeGroot M H. An analysis of cooperation and learning in a duopoly context. American Economic Review, 1973, 63(1):24-37.
[28] Maenhout P J. Robust portfolio rules and asset pricing. Review of Financial Studies, 2004, 17(4):951-983.

基金

国家自然科学基金重点项目(72031003),湖南省自科基金(2020JJ4329),湖南省社科基金(18YBA198)
PDF(641 KB)

297

Accesses

0

Citation

Detail

段落导航
相关文章

/