• • 上一篇
廖雪丽1, 陈金叶2, 张琪1, 夏业茂1
廖雪丽, 陈金叶, 张琪, 夏业茂. 两部分潜变量模型的变分贝叶斯推断[J]. 系统科学与数学, 2023, 43(4): 1039-1068.
LIAO Xueli, CHEN Jinye, ZHANG Qi, XIA Yemao. Variational Bayesian Inference for Two-Part Latent Variable Models[J]. Journal of Systems Science and Mathematical Sciences, 2023, 43(4): 1039-1068.
LIAO Xueli1, CHEN Jinye2, ZHANG Qi1, XIA Yemao1
MR(2010)主题分类:
分享此文:
[1] Cragg J G. Some statistical models for limited dependent variables with application to the demand for durable goods. Econometrica, 1971, 39(5):829-844. [2] Manning W G, Morris C N, Newhouse J P, et al. A two-part model of the demand for medical care:Preliminary results from the health insurance experiment, in health, economics, and health economics. Eds. by der Gaag J. van and Perlman M, Amsterdam:North-Holland, 1981, 103-104. [3] Duan N, Manning W G, Morris C N, et al. A comparison of alternative models for the demand for medical care. Journal of Business and Economic Statistics, 1983, 1:115-126. [4] Olsen M K, Schafer J L. A two-part random-effects model for semicontinuous longitudinal data. Journal of the American Statistical Association, 2001, 96(454):730-745. [5] Neelon B, Zhu L, Neelon S E B. Bayesian two-part spatial models for semicontinuous data with application to emergency department expenditures. Biostatistics, 2015, 16(3):465-480. [6] Liu L. Joint modeling longitudinal semi-continuous data and survival with application to longitudinal medical cost data. Statist. Med., 2009, 28(6):972-986. [7] Han D X, Liu L, Su X G, et al. Variable selection for random effects two-part models. Statistical Methods in Medical Research, 2019, 28(9):2697-2709. [8] Kim Y, Muthén B O. Two-part factor mixture modeling:Application to an aggressive behavior measurement instrument. Structural Equation Modeling:A Multidisciplinary Journal, 2009, 16(4):602-624. [9] Xu S, Blozis S A, Vandewater E A. On fitting a multivariate two-part latent growth model. Structural Equation Modeling:A Multidisciplinary Journal, 2014, 21(1):131-148. [10] Feng X N, Lu B, Song, X Y, et al. Financial literacy and household finances:A Bayesian two-part latent variable modeling approach. Journal of Empirical Finance, 2019, 51:119-137. [11] 夏业茂,凌耀斌,熊双粲.两部分因子分析模型的贝叶斯推断.应用数学, 2018, 31(4):761-778. (Xia Y M, Ling Y B, Xiong S C. Bayesian inference for two-part factor analytic model. Mathematica Applicata, 2018, 31(4):761-778.) [12] Xia Y M, Lu B, Tang N S. Inference on two-part latent variable analysis model with multivariate longitudinal data. Structural Equation Modeling:A Multidisciplinary Journal, 2019, 26(5):685- 709. [13] Gou J W, Xia Y M, Jiang D P. Bayesian analysis of two-part nonlinear latent variable model:Semiparametric method. Statistical Modeling, 2022. DOI:10.1177/1471082X211059233. [14] Geman S, Geman D. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6:721-741. [15] Gelfand A E, Smith A F M. Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 1990, 85(410):398-409. [16] Geyer C J. Practical Markov chain Monte Carlo. Statistical Science, 1992, 7:473-511. [17] Tierney L. Markov chains for exploring posterior distributions (with discussion). Annals of Statistics, 1994, 22(4):1701-1762. [18] Peterson C, Anderson J. A mean field theory learning algorithm for neural networks. Complex Systems, 1987, 1:995-1019. [19] Jaakkola T, Jordan M I. Computing upper and lower bounds on likelihoods in intractable networks. Uncertainty Artificial Intelligence, 1996, 340-348. [20] Jaakkola T, Jordan M I. A variational approach to Bayesian logistic regression models and their extensions. Artificial Intelligence and Statistics, 1997, 1-12. [21] Jordan M I, Ghahramani Z, Jaakkola T, et al. Introduction to variational methods for graphical models. Machine Learning, 1999, 37:183-233. [22] Blei D M, Jordan M I. Variational inference for Dirichelt process mixtures. Journal of Bayesian Analysis, 2006, 1:121-144. [23] Wainwright M J, Jordan M I. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 2008, 1:1-305. [24] Blei D M, Kucukelbir A, Mcauliffe J D. Variational inference:A review for statisticians. Journal of the American Statistical Association, 2017, 112(518):859-877. [25] Wang Y X, Blei D M. Frequentist consistency of variational Bayes. Journal of the American Statistical Association, 2019, 114(527):1147-1161. [26] Polson N G, Scott J G, Windle J. Bayesian inference for logistic models using Polya-Gamma latent variables. Journal of American statistician Association, 2013, 108(504):1339-1349 [27] Bollen K A. Structural Equations with Latent Variables. New York:John Wiley, 1989. [28] Anderson T W. An Introduction to Multivariate Statistical Analysis. New York:John Wiley, 1984. [29] Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Ser. B, 1996, 58:267-288. [30] Park T, Casella G. The Bayesian lasso. Journal of the American Statistical Association, 2008, 103(482):681-686. [31] Zou H. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 2006, 101(476):1418-1429. [32] Tanner M A, Wong W H. The calculation of posterior distributions by data augmentation (with discussion). Journal of the American statistical Association, 1987, 82:528-550. [33] Gelfand A E, Ghosh, S K. Model choice:A minimum posterior predictive loss approach. Biometrika, 1998, 85:1-11. [34] Feng X N, Wu H T, Song X Y. Bayesian adaptive lasso for ordinal regression with latent variables. Sociological Methods & Research, 2017, 46(4):926-953. [35] Ibrahim J G, Chen M H, Sinha D. Criterion based methods for Bayesian model assessment. Statistica Sinica, 2001, 11:419-443. [36] Gelman A. Inference and monitoring convergence. Markov Chain Monte Carlo in Practice (Eds. by Gilks W R, Richardson S, Spiegelhalter D J), 131-144, London:Chapman and Hall, 1996. [37] Holmes, C C, Held L. Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis, 2006, 1(1):145-168. [38] Jaakkola T, Jordan M I. Bayesian parameter estimation via variational methods. Statistics and Computing, 2000, 10:25-37. [39] Seshadri V. The Inverse Gaussian Distribution:Statistical Theory and Applications. New York:Springer-Verlag, 1999. [40] Jørgensen B. Statistical properties of the inverse gaussian distribution. Lectures Notes in Statistics. Eds. by Brillinger D, Fienberg S, Gani J, et al. New York:Springer-Verlag, 1982. |
[1] | 黄淼淇, 夏志明. 均值模型中多变点问题的平均估计方法[J]. 系统科学与数学, 0, (): 11-0. |
[2] | 梁永玉, 田茂再. 基于分层贝叶斯时空Poisson模型的流行病建模研究[J]. 系统科学与数学, 2022, 42(2): 462-472. |
[3] | 夏业茂,陈高燕,刘应安. 基于多元${\bm t}$-分布的隐马尔可夫潜变量模型的稳健推断[J]. 系统科学与数学, 2016, 36(10): 1783-1803. |
[4] | 李海芬;汤银才. 对数稳定分布加速寿命试验的贝叶斯分析[J]. 系统科学与数学, 2011, 31(4): 448-457. |
[5] | 陈雪东;唐年胜. 带有不可忽略缺失数据的半参数再生散度模型的贝叶斯分析[J]. 系统科学与数学, 2010, 30(10): 1334-1350. |
[6] | 熊世峰;牟唯嫣. 二项分布基于logit变换的近似信仰推断[J]. 系统科学与数学, 2009, 29(8): 1071-1078. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||