考虑失效风险的农产品配送中心选址和路径优化研究

浦徐进, 郭瑞, 付亚平

系统科学与数学 ›› 2023, Vol. 43 ›› Issue (7) : 1862-1877.

PDF(1084 KB)
PDF(1084 KB)
系统科学与数学 ›› 2023, Vol. 43 ›› Issue (7) : 1862-1877. DOI: 10.12341/jssms22579

考虑失效风险的农产品配送中心选址和路径优化研究

    浦徐进1, 郭瑞1, 付亚平2
作者信息 +

An Optimization Algorithm for the Location-Routing Problem of Agricultural Product Distribution Centers Considering Disruption Risk

    Pu Xujin1, Guo Rui1, Fu Yaping2
Author information +
文章历史 +

摘要

由于自然灾害、公共疫情等事件的突发性,失效风险已经成为农产品配送中心最重要、最引人关注的一类风险.文章针对存在失效风险的农产品配送中心选址和路径优化问题,首先利用弹复性衡量系统应对失效的能力,构建以总成本和配送时间为目标的非线性混合整数规划模型;其次,提出一种基于模拟退火局部搜索的多目标混合遗传算法(IGSSA)用于模型求解;最后,在生成的测试实例中将IGSSA与三种多目标算法进行比较.研究结果表明,建立的模型可以有效应对农产品配送中心失效风险.同时,提出的IGSSA具备较好的搜索深度与广度,对于求解建立的模型更有效.

Abstract

Due to natural disasters, public epidemics and other reasons, the risk of failure has become the most important and most concerned type of risk in agricultural product distribution centers. Aiming at the problem of location and route of agricultural product distribution center with failure risk, this paper firstly uses elasticity to measure the ability of the system to cope with failure, and builds a nonlinear mixed integer programming model with total cost and delivery time as the goal. Secondly, a multi-objective hybrid genetic algorithm (IGSSA) based on local search of simulated annealing is proposed for model solving. Finally, IGSSA is compared with three multi-objective algorithms in the generated test cases. The research results show that the proposed model can effectively deal with the failure problem caused by the distribution center. At the same time, IGSSA has better search depth and breadth, which is more effective for optimizing the established model.

关键词

农产品 / 失效风险 / 弹复性 / 局部搜索

Key words

Agricultural products / disruption risk / resilience / local search

引用本文

导出引用
浦徐进 , 郭瑞 , 付亚平. 考虑失效风险的农产品配送中心选址和路径优化研究. 系统科学与数学, 2023, 43(7): 1862-1877. https://doi.org/10.12341/jssms22579
Pu Xujin , Guo Rui , Fu Yaping. An Optimization Algorithm for the Location-Routing Problem of Agricultural Product Distribution Centers Considering Disruption Risk. Journal of Systems Science and Mathematical Sciences, 2023, 43(7): 1862-1877 https://doi.org/10.12341/jssms22579
中图分类号: 90B25   

参考文献

[1] Kumar A, Mangla S K, Kumar P, et al. Mitigate risks in perishable food supply chains:Learning from COVID-19. Technological Forecasting and Social Change, 2021, 166(12):120643.
[2] Yu X, Zhou Y, Liu X F. A novel hybrid genetic algorithm for the location routing problem with tight capacity constraints. Applied Soft Computing, 2019, 85(12):105760.
[3] 万孟然, 叶春明, 董君,等.考虑备灾的双层规划应急资源调度选址-路径优化模型与算法. 计算机应用研究, 2021, 38(10):2961-2967. (Wan M R, Ye C M, Dong J, et al. A bilevel programming model and algorithm for emergency resource scheduling site selection and path optimization considering disaster preparedness. Computer Application Research, 2021, 38(10):2961-2967.)
[4] Zhang S A, Chen M Z, Zhang W Y. A novel location-routing problem in electric vehicle transportation with stochastic demands. Journal of Cleaner Production, 2019, 221(1):567-581.
[5] 刘长石, 彭怡, 寇纲. 震后应急物资配送的模糊定位-路径问题研究. 中国管理科学, 2016, 24(5):111-118. (Liu C S, Peng Y, Kou G. A study on the fuzzy location and path problem of emergency material distribution after an earthquake. China Management Science, 2016, 24(5):111-118.)
[6] 李锐, 李晓会, 陈鑫. 可靠性绿色物流配送选址-路径问题研究. 计算机工程与应用, 2020, 56(23):237-224. (Li R, Li X H, Chen X. Research on the location and path problem of reliable green logistics delivery. Computer Engineering and Applications, 2020, 56(23):237-224.)
[7] Ghasemi P, Khalili-Damghani K, Hafezolkotob A, et al. Uncertain multi-objective multicommodity multi-period multi-vehicle location-allocation model for earthquake evacuation planning. Applied Mathematics and Computation, 2019, 350(1):105-132.
[8] Jabbarzadeh A, Azad N, Verma M. An optimization approach to planning rail hazmat shipments in the presence of random disruptions. Omega, 2020, 96:102078.
[9] Golestani M, Moosavirad S H, Asadi Y, et al. A multi-objective green hub location problem with multi item-multi temperature joint distribution for perishable products in cold supply chain. Sustainable Production and Consumption, 2021, 27:1183-1194.
[10] Chan F T S, Wang Z X, Goswami A, et al. Multi-objective particle swarm optimisation based integrated production inventory routing planning for efficient perishable food logistics operations. International Journal of Production Research, 2020, 58(17):5155-5174.
[11] Chen Y, Zheng W, Li W, et al. The robustness and sustainability of port logistics systems for emergency supplies from overseas. Journal of Advanced Transportation, 2020, (1):1-10.
[12] Tirkolaee E B, Hadian S, Weber G W, et al. A robust green traffic-based routing problem for perishable products distribution. Computational Intelligence, 2020, 36(1):80-101.
[13] Liao T Y, Hu T Y, Ko Y N. A resilience optimization model for transportation networks under disasters. Natural Hazards, 2018, 93(1):469-489.
[14] 李锐, 黄敏, 张瑞友,等. 基于弹复性的第四方物流多周期网络设计. 计算机集成制造系统, 2014, 20(8):2019-2028. (Li R, Huang M, Zhang R Y, et al. Design of a multi cycle network for fourth party logistics based on resilience. Computer Integrated Manufacturing System, 2014, 20(8):2019-2028.)
[15] Chen L, Miller-Hooks E. Resilience:An indicator of recovery capability in intermodal freight transport. Transportation Science, 2012, 46(1):109-123.
[16] Sube S, Soumava G, Jayanth J, et al. Enhancing supply chain resilience using ontology-Based decision support system. International Journal of Computer Integrated Manufacturing, 2019, 32(7):642-657.
[17] Osvald A, Stirn L Z. A vehicle routing algorithm for the distribution of fresh vegetables and similar perishable food. Journal of Food Engineering, 2008, 85(2):285-295.
[18] Dhadwal M K, Jung S N, Kim C J. Advanced particle swarm assisted genetic algorithm for constrained optimization problems. Computational Optimization & Applications (S0926-6003), 2014, 58(3):781-806.
[19] Paessens H. The savings algorithm for the vehicle routing problem. European Journal of Operational Research, 1988, 34(3):336-344.
[20] Arai K, Barakbah A R. Hierarchical K-means:An algorithm for centroids initialization for Kmeans. Reports of the Faculty of Science and Engineering, 2007, 36(1):25-31.
[21] 姜大立,杨西龙,杜文,等.车辆路径问题的遗传算法研究.系统工程理论与实践, 1999, 19(6):41-46. (Jiang D L, Yang X L, Du W, et al. Research on genetic algorithms for vehicle routing problem. System Engineering-Theory & Practice, 1999, 19(6):41-46.)
[22] Lin S W, Ying K C. Minimizing makespan and total flowtime in permutation flowshops by a bi-objective multi-start simulated-annealing algorithm. Computers & Operations Research, 2013, 40(6):1625-1647.
[23] 张赛男,刘东亮.基于CW节约算法和遗传算法的网络优化.吉林大学学报(理学版), 2018, 56(5):1219- 1223. (Zhang S N, Liu D L. Network optimization based on CW saving algorithm and genetic algorithm. Journal of Jilin University:Science Edition, 2018, 56(5):1219-1223.)
[24] 康凯, 韩杰, 普玮, 等.生鲜农产品冷链物流低碳配送路径优化研究.计算机工程与应用, 2019, 55(2):259- 265. (Kang K, Han J, Pu W, et al. Research on optimization of low carbon delivery paths for cold chain logistics of fresh agricultural products. Computer Engineering and Applications, 2019, 55(2):259-265.)
[25] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
[26] Zhang Q, Hui L. MOEA/D:A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 2007, 11(6):712-731.
[27] Yu X, Zhou Y, Liu X F. The two-echelon multi-objective location routing problem inspired by realistic waste collection applications:The composable model and a metaheuristic algorithm. Applied Soft Computing, 2020, 94:106477.
[28] Sun Y, Yen G G, Zhang Y. IGD Indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Transactions on Evolutionary Computation, 2018, 23(2):173-187.
[29] Zitzler E, Thiele L, Laumanns M, et al. Performance assessment of multiobjective optimizers:An analysis and review. IEEE Transactions on Evolutionary Computation, 2003, 7(2):117-132.
[30] Ruxton G D. The unequal variance t-test is an underused alternative to Student's t-test and the Mann-Whitney U test. Behavioral Ecology, 2010, 17(4):688-690.

基金

国家自然科学基金面上项目(72271109)资助课题
PDF(1084 KB)

243

Accesses

0

Citation

Detail

段落导航
相关文章

/