• • 上一篇
周雅雯, 陈望学, 邓翠红, 杨瑞
周雅雯, 陈望学, 邓翠红, 杨瑞. 三种抽样设计下Inverse Exponential分布中参数的优良估计[J]. 系统科学与数学, 2023, 43(4): 1069-1080.
ZHOU Yawen, CHEN Wangxue, DENG Cuihong, YANG Rui. Optimal Estimation of the Parameter of Inverse Exponential Distribution Under Three Sampling Designs[J]. Journal of Systems Science and Mathematical Sciences, 2023, 43(4): 1069-1080.
ZHOU Yawen, CHEN Wangxue, DENG Cuihong, YANG Rui
MR(2010)主题分类:
分享此文:
[1] Keller A Z, Kamath A, Perera U D. Reliability analysis of CNC machine tools. Reliability Engineering, 1982, 3(6):449-473. [2] Lin C T, Duran B S, Lewis T O. Inverted gamma as a life distribution. Microelectronics Reliability, 1989, 29(4):619-626. [3] Singh S K, Singh U, Kumar D. Bayes estimators of the reliability function and parameter of inverted exponential distribution using informative and non-informative priors. Journal of Statistical Computation and Simulation, 2013, 83(12):2258-2269. [4] Fatima K, Ahmad S P. Bayesian approximation techniques of inverse exponential distribution with applications in engineering. International Journal of Mathematical Sciences and Computing, 2018, 4(2):49-62. [5] Prakash G. Some estimation procedures for the inverted exponential distribution. South Pacific Journal of Natural and Applied Sciences, 2009, 27(1):71-78. [6] Dey S. Inverted exponential distribution as a life distribution model from a Bayesian viewpoint. Data Science Journal, 2007, 6(4):107-113. [7] Prakash G. Inverted exponential distribution under a Bayesian viewpoint. Journal of Modern Applied Statistical Methods, 2012, 11(1):190-202. [8] Oguntunde P E, Babatunde O S, Ogunmola A O. Theoretical analysis of the Kumaraswamyinverse exponential distribution. International Journal of Statistics and Applications, 2014, 4(2):113-116. [9] Singh S K, Singh U, Yadav A, et al. On the estimation of stress strength reliability parameter of inverted exponential distribution. International Journal of Scientific World, 2015, 3(1):98-112. [10] McIntyre G A. A method of unbiased selective sampling, using ranked sets. Austranlian Journal of Agricultural Research, 1952, 3(4):385-390. [11] Takahasi K, Wakimoto K. On unbiased estimates of the population mean based on the sample stratified by means of ordering. Annals of the Institute of Statistical Mathematics, 1968, 20(1):1-31. [12] Abu-Dayyeh W, Assrhani A, Ibrahim K. Estimation of the shape and scale parameters of Pareto distribution using ranked set sampling. Statistical Papers, 2013, 54(1):207-225. [13] Lesitha G, Thomas P Y. Estimation of the scale parameter of a log-logistic distribution. Metrika, 2013, 76(3):427-448. [14] Wang X L, Lim J, Stokes L. Using ranked set sampling with cluster randomized designs for improved inference on treatment effects. Journal of the American Statistical Association, 2016, 111(516):1576-1590. [15] Dong X F, Zhang L Y. Estimation of system reliability for exponential distributions based on L ranked set sampling. Communications in Statistics-Theory and Methods, 2020, 49(15):3650-3662. [16] 杨瑞, 陈望学, 沈炳良,等. 排序集抽样下Power-law分布中参数的参数估计. 系统科学与数学, 2020, 40(2):308-317. (Yang R, Chen W X, Shen B L, et al. Parametric estimator of the Power-Law distribution under ranked set sampling. Journal of Systems Science and Mathematical Sciences, 2020, 40(2):308- 317.) [17] Qiu G X, Eftekharian A. Extropy information of maximum and minimum ranked set sampling with unequal samples. Communications in Statistics-Theory and Methods, 2021, 50(13):2979-2995. [18] Qian W S, Chen W X, He X F. Parameter estimation for the Pareto distribution based on ranked set sampling. Statistical Papers, 2021, 62(1):395-417. [19] Casella G, Berger R L. Statistical Inference. California, USA:Wads Worth and Brooks, 1990. [20] Mann N R. Optimum estimators for linear functions of location and scale parameters. The Annals of Mathematical Statistics, 1969, 40(6):2149-2155. [21] Chen W X, Xie M Y, Wu M. Modified maximum likelihood estimator of scale parameter using moving extremes ranked set sampling. Communications in Statistics Simulation and Computation, 2016, 45(6):2232-2240. [22] Zheng G, Al-Saleh M. Modified maximum likelihood estimators based on ranked set samples. Annals of the Institute of Statistical Mathematics, 2002, 54(3):641-658. [23] Stokes L. Parametric ranked set sampling. Annals of the Institute of Statistical Mathematics, 1995, 47(3):465-482. |
[1] | 蔡光辉, 吴志敏. 完美和非完美两阶段排序集抽样下几类正态性检验的功效与AUC研究[J]. 系统科学与数学, 2023, 43(1): 227-243. |
[2] | 刘开元, 谢田法. 右删失数据下带协变量威布尔分布模型参数的估计[J]. 系统科学与数学, 2022, 42(9): 2497-2507. |
[3] | 张良勇, 董晓芳. 排序集抽样下指数分布产品的寿命性能评估[J]. 系统科学与数学, 2022, 42(3): 753-765. |
[4] | 张建芬, 陈望学, 王硕, 周雅雯. 不同类型排序集抽样下skew-normal分布的Fisher信息量[J]. 系统科学与数学, 2022, 42(12): 3368-3379. |
[5] | 陈蒙, 陈望学, 邓翠红, 杨瑞. 排序集抽样下Inverse Rayleigh分布的Fisher信息量及其在参数估计中的应用[J]. 系统科学与数学, 2022, 42(1): 141-152. |
[6] | 沈炳良, 陈望学, 董艳飞. 排序集抽样下Rayleigh分布的参数估计[J]. 系统科学与数学, 2021, 41(3): 854-864. |
[7] | 姚东森,陈望学,杨瑞,龙春先. 优良抽样设计下~Logistic~分布中参数的极大似然估计[J]. 系统科学与数学, 2020, 40(2): 233-242. |
[8] | 杨瑞,陈望学,沈炳良,龙春先. 排序集抽样下Power-law分布中参数的参数估计[J]. 系统科学与数学, 2020, 40(2): 308-317. |
[9] | 龙春先,陈望学,杨瑞,姚东森. 优良抽样设计下总体均值的比率估计[J]. 系统科学与数学, 2020, 40(2): 375-381. |
[10] | 梁晓琳,李二倩,田茂再. 多元广义泊松分布的参数估计与诊断[J]. 系统科学与数学, 2017, 37(5): 1319-1334. |
[11] | 李世凯,吴刘仓,詹金龙,易捷伊. 混合非线性联合均值与方差模型的统计推断[J]. 系统科学与数学, 2017, 37(2): 623-631. |
[12] | 韩景旺,王立斌. 基于交叉数据随机波动模型的实证研究[J]. 系统科学与数学, 2016, 36(5): 712-718. |
[13] | 魏千舒,宋立新,王晓光. 带有外生变变量的动态条件相关模型[J]. 系统科学与数学, 2015, 35(12): 1479-1486. |
[14] | 吴启光;吕建华. 定时截尾下指数分布产品可靠性抽样检验方案[J]. 系统科学与数学, 2003, 23(2): 145-154. |
[15] | 薛宏旗;宋立新. 分组数据下参数极大似然估计渐近有效性[J]. 系统科学与数学, 2001, 21(2): 250-256. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||