• • 上一篇
刘华玲, 何轶辉
刘华玲, 何轶辉. LSTM的季节性注意力及在文本情感分类中的应用[J]. 系统科学与数学, 2023, 43(4): 1002-1020.
LIU Hualing, HE Yihui. LSTM Altered by Seasonal Attention and Its Application in Text Sentiment Classification[J]. Journal of Systems Science and Mathematical Sciences, 2023, 43(4): 1002-1020.
LIU Hualing, HE Yihui
MR(2010)主题分类:
分享此文:
[1] Hochreiter S, Schmidhuber J. Long-short term memory. Neural Computation, 1997, 9(8):1735- 1780. [2] Lai G K, Chang W C, Yang Y M, et al. Modeling long short-term temporal patterns with deep neural networks. The 41st international ACM SIGIR Conference on Research & Development in Information Retrieval, 2018, 95-104. [3] 罗广诚, 郜家珏, 蔡文学. 基于GRA-LSTM与SARIMA组合模型的季节性时间序列预测. 智能计算机与应用, 2021, 11(6):195-200. (Luo G C, Gao J J, Cai W X. Seasonal time series prediction based on combination model of GRA-LSTM and SARIMA. Intelligent Computer and Applications, 2021, 11(6):195-200.) [4] 唐晓彬, 董曼茹, 张瑞. 基于机器学习LSTM$\&$US模型的消费者信心指数预测研究. 统计研究, 2020, 37(7):104-115. (Tang X B, Dong M R, Zhang R. Research on the prediction of consumer confidence index based on machine learning LSTM&US model. Statistical Research, 2020, 37(7):104-115.) [5] 邸浩, 赵学军, 张自力. 基于EEMD-LSTM-Adaboost的商品价格预测. 统计与决策, 2018, 34(13):72-76. (Di H, Zhao X J, Zhang Z L. Commodity price forecasting based on EEMD-LSTM-Adaboost. Statistics & Decision, 2018, 34(13):72-76.) [6] 杨青, 王晨蔚. 基于深度学习LSTM神经网络的全球股票指数预测研究. 统计研究, 2019, 36(3):65-77. (Yang Q, Wang C W. A study on forecast of global stock indices based on deep LSTM neural network. Statistical Research, 2019, 36(3):65-77.) [7] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. International Conference on Learning Representations, ICLR, 2015, 1-15. [8] 邱锡鹏. 神经网络与深度学习. 北京:机械工业出版社, 2020. (Qiu X P. Nerual Network and Deep Learning. Beijing:China Machine Press, 2020.) [9] Vaswani A, Shazeer N, Parmar N, et al. Attention is all your need. Proceedings of the 31st International Conference on Neural Information Processing Systems, NISS, 2017, 6000-6010. [10] 梁斌, 刘全, 徐进, 等. 基于多注意力卷积神经网络的特定目标情感分析. 计算机研究与发展, 2017, 54(8):1724-1735. (Liang B, Liu Q, Xu J, et al. Aspect-based sentiment analysis based on multi-attention CNN. Journal of Computer Research and Development, 2017, 54(8):1724-1735.) [11] 邱宁佳, 周思丞, 丛琳, 等. 改进CNN的多通道语义合成情感分类模型研究. 计算机工程与应用, 2019, 55(23):136-141. (Qiu N J, Zhou S C, Cong L, et al. Research on multi-channel semantic fusion emotion classification model based on CNN. Journal of Computer Research and Development, 2019, 55(23):136-141.) [12] 程艳, 尧磊波, 张光河, 等. 基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析. 计算机研究与发展, 2020, 57(12):2583-2595. (Cheng Y, Yao L B, Zhang G H, et al. Text sentiment orientation analysis of multi-channels CNN and BiGRU based on attention mechanism. Journal of Computer Research and Development, 2020, 57(12):2583-2595.) [13] 贺波, 马静, 李驰. 基于融合特征的商品文本分类方法研究. 情报理论与实践, 2020, 43(11):162-168. (He B, Ma J, Li C. Research on commodity text classification based on fusion features. Information Studies:Theory & Application, 2020, 43(11):162-168.) [14] 滕金保, 孔韦韦, 田乔鑫, 等. 基于CNN和LSTM的多通道注意力机制文本分类模型. 计算机工程与应用, 2021, 57(23):154-162. (Teng J B, Kong W W, Tian Q X, et al. Multi-channel attention mechanism text classification model based on CNN and LSTM. Computer Engineering and Applications, 2021, 57(23):154-162.) [15] 万家山, 吴云志. 基于深度学习的文本分类方法研究综述. 天津理工大学学报, 2021, 37(2):41-47. (Wan J S, Wu Y Z. Review of text classification research based on deep learning. Journal of Tianjin University of Technology, 2021, 37(2):41-47.) [16] Yang Z, Yang D, Dyer C, et al. Hierarchical attention networks for document classification. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, 2016, 1480-1489. [17] Fan H, Mei X, Prokhorov D, et al. Multi-level contextual RNNs with attention model for scene labeling. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(11):3475-3485. [18] Kim Y, Denton C, Hoang L, et al. Structured attention networks. Proceedings of 5th International Conference on Learning Representations, 2017, 1-21. [19] 袁和金, 张旭, 牛为华, 等. 融合注意力机制的多通道卷积与双向GRU模型的文本情感分析研究. 中文信息学报, 2019, 33(10):109-118. (Yuan H J, Zhang X, Niu W H, et al. Sentiment analysis based on multi-channel convolution and bi-directional GRU with attention mechanism. Journal of Chinese Information Processing, 2019, 33(10):109-118.) [20] 宁尚明, 滕飞, 李天瑞. 基于多通道自注意力机制的电子病历实体关系抽取. 计算机学报, 2020, 43(5):916-929. (Ning S M, Teng F, Li T R. Multi-channel self-attention mechanism for relation extraction in clinical records. Chinese Journal of Computers, 2020, 43(5):916-929.) [21] Fu X, Yang J, Li J, et al. Lexicon-enhanced LSTM with attention for general sentiment analysis. IEEE Access, 2018, 6(1):71884-71891. [22] Bengio Y, Ducharme R, Vincent P, et al A neural probabilistic language model Journal of Machine Learning Research, 2003, 3(2):1137-1155 [23] Mikolov T, Sutskever I, Chen K, et al Distributed representations of words and phrases and their compositionality. Proceedings of the 26th International Conference on Neural Information Processing Systems, 2013, 3111-3119 [24] Liu Z D, Zhou W G, Li H Q. AB-LSTM:Attention-based bidirectional LSTM model for scene text detection. ACM Transactions on Multimedia Computing Communications and Applications, 2019, 15(4):1-23. [25] 王红, 史金钏, 张志伟. 基于注意力机制的LSTM的语义关系抽取. 计算机应用研究, 2018, 35(5):1417-1420, 1440. (Wang H, Shi J C, Zhang Z W. Text semantic relation extraction of LSTM based on attention mechanism. Application Research of Computers, 2018, 35(5):1417-1420, 1440.) [26] Li M, Miao Z, Xu W. ACRNN-based attention-seq2seq model with fusion feature for automatic labanotation generation. Neurocomputing, 2021, 454(1):430-440. [27] Bensalah N, Ayad H, Adib A, et al. CRAN:A hybrid CNN-RNN attention-based model for arabic machine translation. Networking, Intelligent Systems and Security, NISS, 2021, 87-102. [28] 杨兴锐, 赵寿为, 张如学, 等. 结合自注意力和残差的BiLSTM-CNN文本分类模型. 计算机工程与应用, 2022, 58(3):172-180. (Yang X R, Zhao S W, Zhang R X, et al. BiLSTM-CNN classification model based on selfattention and residual network. Computer Engineering and Applications, 2022, 58(3):172-180.) [29] 谢润忠, 李烨. 基于BERT和双通道注意力的文本情感分类模型. 数据采集与处理,2020, 35(4):642-652. (Xie R X, Li Y. Text sentiment classification model based on BERT and dual channel attention. Journal of Data Acquisition and Processing, 2020, 35(4):642-652.) [30] Devlin J, Chang M W, Lee K, et al. BERT:Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, 2019, 4171-4186. [31] Kelvin X, Jimmy B, Ryan K, et al. Show, attend and tell:Neural image caption generation with visual attention. International Conference on Machine Learning, PMLR, 2015, 2048-2057. [32] Shih S Y, Sun F K, Lee H Y. Temporal pattern attention for multivariate time series forecasting. Machine Learning, 2019, 108(8-9):1421-1441. [33] 陆超红. 基于多通道循环卷积神经网络的文本分类方法. 计算机应用与软件, 2020, 37(8):282-288. (Lu C H. Text classification based on multichannel recurrent convolutional neural network. Computer Applications and Software, 2020, 37(8):282-288.) [34] 曲宗希, 沙勇忠, 李雨桐. 基于灰狼优化与多机器学习的重大传染病集合预测研究——以COVID-19疫情为例. 数据分析与知识发现, 2022, 6(8):122-133. (Qu Z X, Sha Y Z, Li Y T. Predicting major infectious diseases based on grey wolf optimization and multi-machine learning:Case study of COVID-19. Data Analysis and Knowledge Discovery, 2022, 6(8):122-133.) [35] Fazle K, Somshubra M, Houshang D, et al. Multivariate LSTM-FCNs for time series classifcation. Neural Networks, 2019, 116(1):237-245. [36] Wang S, Manning C D. Baselines and bigrams:Simple, good sentiment and topic classification. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, 2012, 90-94. [37] Wang X, Jiang W, Luo Z. Combination of convolutional and recurrent neural network for sentiment analysis of short texts. Proceedings of Conference on COLING, 2016, 2428-2437. [38] Kasem K, Omar E, Ashok K, et al. Economic LSTM approach for recurrent neural networks. IEEE Transactions on Circuits and Systems II:Express Briefs, 2019, 66(11):1885-1889. [39] Lei T, Zhang Y, Wang S I, et al. Simple recurrent units for highly parallelizable recurrence. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2018, 4470-4481. |
[1] | 王鑫, 王莹. 基于LSTM-CNN的中小企业信用风险预测[J]. 系统科学与数学, 2022, 42(10): 2698-2711. |
[2] | 琚春华,陈冠宇,鲍福光. 基于kNN-Smote-LSTM的消费金融风险检测模型[J]. 系统科学与数学, 2021, 41(2): 481-498. |
[3] | 张立文,朱周帆,郝鸿. 基于深度学习的乘用车市场预警模型研究[J]. 系统科学与数学, 2020, 40(11): 2136-2150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||