• • 上一篇    

异质非线性分数阶多智能体系统的预设时间二部一致性跟踪

龚平1, 汪坤2   

  1. 1. 广东外语外贸大学数学与统计学院, 广州 510006;
    2. 广州大学数学与信息科学学院, 广州 510006
  • 收稿日期:2022-04-27 修回日期:2022-07-25 发布日期:2022-12-13
  • 通讯作者: 龚平, Email: gongping@gdufs.edu.cn
  • 基金资助:
    国家自然科学基金项目(62003142), 广东省基础与应用基础研究基金项目(2020A1515110965)资助课题.

龚平, 汪坤. 异质非线性分数阶多智能体系统的预设时间二部一致性跟踪[J]. 系统科学与数学, 2022, 42(11): 2874-2885.

GONG Ping, WANG Kun. Preset-Time Bipartite Consensus Tracking of Heterogeneous Nonlinear Fractional-Order Multi-Agent Systems[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(11): 2874-2885.

Preset-Time Bipartite Consensus Tracking of Heterogeneous Nonlinear Fractional-Order Multi-Agent Systems

GONG Ping1, WANG Kun2   

  1. 1. School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou 510006;
    2. School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006)
  • Received:2022-04-27 Revised:2022-07-25 Published:2022-12-13
文章关注一类具有符号有向图的异质非线性分数阶多智能体系统的预设时间二部一致性跟踪问题.通过引入一类具有广义性质的时变函数,设计了一类基于时变函数的预设时间分布式控制器,以一种完全分布式的方式分别实现了异质线性和异质非线性分数阶多智能体系统的精确预设时间二部一致性跟踪.该预设时间可以通过时变函数预先设定, 且不依赖于任何初始值和参数.最后, 用实例验证了理论结果的有效性.
This paper focuses on the preset-time bipartite consensus tracking problem of a class of heterogeneous nonlinear fractional-order multi-agent systems with signed directed graphs. By introducing a class of time-varying functions with generalized properties, a time-varying function based preset-time distributed controller is designed to achieve accurate preset-time bipartite consensus tracking in a fully distributed fashion for the heterogeneous linear and heterogeneous nonlinear fractional-order multi-agent systems, respectively. The preset time can be preset by a time-varying function, and does not depend on any initial values and parameters. Finally, one example is given to verify the effectiveness of the theoretical results.

MR(2010)主题分类: 

()
[1] Kilbas A, Srivastava H, Trujillo J. Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Elsevier, Amsterdam, 2006, 204.
[2] Podlubny I. Fractional Differential Equations, Mathematics in Science and Engineering. San Diego: Academic Press, Calif, USA, 1999, 198.
[3] 蒋望东, 章月红, 刘伟. 分数阶变时滞惯性Cohen-Grossberg神经网络Mittag-Leffler稳定和渐近$\omega$-周期. 系统科学与数学, 2022, 42(4): 867-885. (Jiang W D, Zhang Y H, Liu W. Global Mittag-Leffler stability and global asymptotic $\omega$-period for a class of fractional-order Cohen-Grossberg inertial neural networks with time-varying delays. Journal of Systems Science and Mathematical Sciences, 2022, 42(4): 867-885.)
[4] Gong P. Distributed consensus of non-linear fractional-order multi-agent systems with directed topologies. IET Control Theory Appl., 2016, 10(18): 2515-2525.
[5] Zhu W, Li W, Zhou P, et al. Consensus of fractional-order multi-agent systems with linear models via observer-type protocol. Neurocomputing, 2017, 230: 60-65.
[6] Chen J, Chen B, Zeng Z. Synchronization and consensus in networks of linear fractional-order multi-agent systems via sampled-data control. IEEE Trans. Neural Netw. Learning Syst., 2019, 31(8): 2955-2964.
[7] Liu H, Cheng L, Tan M, et al. Exponential finite-time consensus of fractional-order multiagent systems. IEEE Trans. Syst., Man, Cybern., Syst., 2020, 50(4): 1549-1558.
[8] Su H, Ye Y, Chen X, et al. Necessary and sufficient conditions for consensus in fractional-order multiagent systems via sampled data over directed graph. IEEE Trans. Syst., Man, Cybern., Syst., 2021, 51(4): 2501-2511.
[9] Qin J, Ma Q, Shi Y, et al. Recent advances in consensus of multi-agent systems: A brief survey. IEEE Trans. Ind. Electron, 2016, 64(6): 4972-4983.
[10] Zuo Z, Han Q L, Ning B, et al. An overview of recent advances in fixed-time cooperative control of multi-agent systems. IEEE Trans. Ind. Informat., 2018, 14(6): 2322-2334.
[11] Hu W, Wen G, Rahmani A, et al. Differential evolution-based parameter estimation and synchronization of heterogeneous uncertain nonlinear delayed fractional-order multi-agent systems with unknown leader. Nonlinear Dyn., 2019, 97(2): 1087-1105.
[12] Gong P. Distributed tracking of heterogeneous nonlinear fractional-order multi-agent systems with an unknown leader. J. Franklin Inst., 2017, 354(5): 2226-2244.
[13] Gong P, Lan W. Adaptive robust tracking control for uncertain nonlinear fractional-order multi-agent systems with directed topologies. Automatica, 2018, 92: 92-99.
[14] Gong P, Lan W. Adaptive robust tracking control for multiple unknown fractional-order nonlinear systems. IEEE Trans. Cybern., 2019, 49(4): 1365-1376.
[15] Gong P, Han Q L, Lan W. Finite-time consensus tracking for incommensurate fractional-order nonlinear multi-agent systems with directed switching topologies. IEEE Trans. Cybern., 2022, 52(1): 65-76.
[16] Pan H, Yu X, Guo L. Admissible leader-following consensus of fractional-order singular multi-agent system via observer-based protocol. IEEE Trans. Circuits Syst. II, Exp. Briefs., 2019, 66(8): 1406-1410.
[17] Altafini C. Consensus problems on networks with antagonistic interactions. IEEE Trans. Autom. Control, 2013, 58(4): 935-946.
[18] Wasserman S, Faust K. Social Network Analysis: Methods Applications. Cambridge: Cambridge Univ. Press, 1994.
[19] Liu J, Chen X, Basar T, et al. Exponential convergence of the discrete-and continuous-time Altafini models. IEEE Trans. Autom. Control, 2017, 62(12): 6168-6182.
[20] Meng D, Jia Y, Du J. Finite-time consensus for multiagent systems with cooperative and antagonistic interactions. IEEE Trans. Neural Netw. Learning Syst., 2016, 27(4): 762-770.
[21] Shi X, Lu J, Liu Y, et al. A new class of fixed-time bipartite consensus protocols for multi-agent systems with antagonistic interactions. J. Frankl. Inst., 2018, 355(12): 5256-5271.
[22] Zhang Y, Liu Y. Nonlinear second-order multi-agent systems subject to antagonistic interactions without velocity constraints. Appl. Math. Comput., 2020, 364: 124667.
[23] Wen G, Wang H, Yu X, et al. Bipartite tracking consensus of linear multi-agent systems with a dynamic leader. IEEE Trans. Circuits Syst. II, Exp. Briefs, 2018, 65(9): 1204-1208.
[24] Bhowmick S, Panja Z. Leader-follower bipartite consensus of linear multiagent systems over a signed directed graph. IEEE Trans. Circuits Syst. II, Exp. Briefs, 2019, 66(8): 1436-1440.
[25] Meng D, Du M, Jia Y. Interval bipartite consensus of networked agents associated with signed digraphs. IEEE Trans. Autom. Control, 2016, 61(12): 3755-3770.
[26] Zou W, Qian K, Xiang Z. Fixed-time consensus for a class of heterogeneous nonlinear multi-agent systems. IEEE Trans. Circuits Syst. II, Exp. Briefs, 2020, 67(7): 1279-1283.
[27] Wang H, Yu W, Wen G, et al. Fixed-time consensus of nonlinear multi-agent systems with general directed topologies. IEEE Trans. Circuits Syst. II, Exp. Briefs, 2019, 66(9): 1587-1591.
[28] Fu J, Wang J. Fixed-time coordinated tracking for second-order multi-agent systems with bounded input uncertainties. Syst. and Contr. Lett., 2016, 93: 1-12.
[29] Zuo Z, Tian B, Defoort M, et al. Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics. IEEE Trans. Autom. Control, 2018, 63(2): 563-570.
[30] Gong P, Han Q L. Fixed-time bipartite consensus tracking of fractional-order multi-agent systems with a dynamic leader. IEEE Trans. Circuits Syst. II, Exp. Briefs, 2020, 67(10): 2054-2058.
[31] Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control, 2012, 57(8): 2106-2110.
[32] Becerra H M, Vázquez C R, Arechavaleta G, et al. Predefined-time convergence control for high-order integrator systems using time base generators. IEEE Trans. Control Syst. Technol., 2018, 26(5): 1866-1873.
[33] Ning B, Han Q L, Zuo Z. Bipartite consensus tracking for second-order multiagent systems: A time-varying function-based preset-time approach. IEEE Trans. Autom. Control, 2021, 66(6): 2739-2745.
[34] Li Z, Wen G, Duan Z, et al. Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs. IEEE Trans. Autom. Control, 2015, 60(4): 1152-1157.
[1] 刘梦洁, 彭丹. 具有混合时变时滞的2-D离散时间非线性切换系统的H控制问题研究[J]. 系统科学与数学, 2022, 42(10): 2774-2793.
[2] 于强, 胡军, 陈东彦. 具有衰减测量和概率通讯延迟的事件触发分布式一致滤波[J]. 系统科学与数学, 2022, 42(9): 2279-2296.
[3] 常绪成, 苗满香. 分户热计量建筑节能热舒适经济模型预测控制研究[J]. 系统科学与数学, 2022, 42(9): 2297-2311.
[4] 颛美斐, 陈东彦, 胡军. 具有衰减测量和随机时滞的离散非线性复杂网络的保概率集员滤波[J]. 系统科学与数学, 2022, 42(8): 1960-1972.
[5] 李莉, 季鹏成, 龚炜, 赵慧, 许佳, 于青云. 复杂系统近临界态分析与调控综述[J]. 系统科学与数学, 2022, 42(6): 1423-1437.
[6] 吴磊, 康英伟. 基于深度强化学习的湿法脱硫系统运行优化[J]. 系统科学与数学, 2022, 42(5): 1067-1087.
[7] 杜亚男,梁振英,徐玉镜. 基于视觉伺服的不确定链式系统的指数镇定[J]. 系统科学与数学, 2016, 36(11): 1837-1850.
[8] 齐雪,张利军,赵杰梅. Serret-Frenet坐标系下AUV自适应路径跟踪控制[J]. 系统科学与数学, 2016, 36(11): 1851-1864.
[9] 傅勤. 大型互联非线性分布参数系统的分散迭代学习控制[J]. 系统科学与数学, 2016, 36(10): 1557-1573.
[10] 王平,贾英民. 具有有界输入领航者的二阶非线性多智能体系统的协调跟踪[J]. 系统科学与数学, 2016, 36(9): 1376-1387.
[11] 曹少中,涂序彦. 多变量协调控制理论研究与发展[J]. 系统科学与数学, 2016, 36(9): 1476-1486.
[12] 李超,李天思,刘奇芳,陈虹. 基于数据驱动的双离合器式自动变速器换挡过程控制[J]. 系统科学与数学, 2016, 36(8): 1081-1093.
[13] 骆吉安,彭 冬亮, 薛安克. 一种渐近最优的单站AOA/TDOA目标运动分析算法[J]. 系统科学与数学, 2016, 36(7): 937-947.
[14] 杨东,赵军. 带有Markovian跳变参数和执行器故障的切换LPV系统有限时间可靠控制[J]. 系统科学与数学, 2016, 36(3): 349-360.
[15] 刘凯,慕小武. 有限通信数据率下二阶连续多自主体系统的一致性研究[J]. 系统科学与数学, 2016, 36(3): 381-389.
阅读次数
全文


摘要