• • 上一篇
龚平1, 汪坤2
龚平, 汪坤. 异质非线性分数阶多智能体系统的预设时间二部一致性跟踪[J]. 系统科学与数学, 2022, 42(11): 2874-2885.
GONG Ping, WANG Kun. Preset-Time Bipartite Consensus Tracking of Heterogeneous Nonlinear Fractional-Order Multi-Agent Systems[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(11): 2874-2885.
GONG Ping1, WANG Kun2
MR(2010)主题分类:
分享此文:
[1] Kilbas A, Srivastava H, Trujillo J. Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Elsevier, Amsterdam, 2006, 204. [2] Podlubny I. Fractional Differential Equations, Mathematics in Science and Engineering. San Diego: Academic Press, Calif, USA, 1999, 198. [3] 蒋望东, 章月红, 刘伟. 分数阶变时滞惯性Cohen-Grossberg神经网络Mittag-Leffler稳定和渐近$\omega$-周期. 系统科学与数学, 2022, 42(4): 867-885. (Jiang W D, Zhang Y H, Liu W. Global Mittag-Leffler stability and global asymptotic $\omega$-period for a class of fractional-order Cohen-Grossberg inertial neural networks with time-varying delays. Journal of Systems Science and Mathematical Sciences, 2022, 42(4): 867-885.) [4] Gong P. Distributed consensus of non-linear fractional-order multi-agent systems with directed topologies. IET Control Theory Appl., 2016, 10(18): 2515-2525. [5] Zhu W, Li W, Zhou P, et al. Consensus of fractional-order multi-agent systems with linear models via observer-type protocol. Neurocomputing, 2017, 230: 60-65. [6] Chen J, Chen B, Zeng Z. Synchronization and consensus in networks of linear fractional-order multi-agent systems via sampled-data control. IEEE Trans. Neural Netw. Learning Syst., 2019, 31(8): 2955-2964. [7] Liu H, Cheng L, Tan M, et al. Exponential finite-time consensus of fractional-order multiagent systems. IEEE Trans. Syst., Man, Cybern., Syst., 2020, 50(4): 1549-1558. [8] Su H, Ye Y, Chen X, et al. Necessary and sufficient conditions for consensus in fractional-order multiagent systems via sampled data over directed graph. IEEE Trans. Syst., Man, Cybern., Syst., 2021, 51(4): 2501-2511. [9] Qin J, Ma Q, Shi Y, et al. Recent advances in consensus of multi-agent systems: A brief survey. IEEE Trans. Ind. Electron, 2016, 64(6): 4972-4983. [10] Zuo Z, Han Q L, Ning B, et al. An overview of recent advances in fixed-time cooperative control of multi-agent systems. IEEE Trans. Ind. Informat., 2018, 14(6): 2322-2334. [11] Hu W, Wen G, Rahmani A, et al. Differential evolution-based parameter estimation and synchronization of heterogeneous uncertain nonlinear delayed fractional-order multi-agent systems with unknown leader. Nonlinear Dyn., 2019, 97(2): 1087-1105. [12] Gong P. Distributed tracking of heterogeneous nonlinear fractional-order multi-agent systems with an unknown leader. J. Franklin Inst., 2017, 354(5): 2226-2244. [13] Gong P, Lan W. Adaptive robust tracking control for uncertain nonlinear fractional-order multi-agent systems with directed topologies. Automatica, 2018, 92: 92-99. [14] Gong P, Lan W. Adaptive robust tracking control for multiple unknown fractional-order nonlinear systems. IEEE Trans. Cybern., 2019, 49(4): 1365-1376. [15] Gong P, Han Q L, Lan W. Finite-time consensus tracking for incommensurate fractional-order nonlinear multi-agent systems with directed switching topologies. IEEE Trans. Cybern., 2022, 52(1): 65-76. [16] Pan H, Yu X, Guo L. Admissible leader-following consensus of fractional-order singular multi-agent system via observer-based protocol. IEEE Trans. Circuits Syst. II, Exp. Briefs., 2019, 66(8): 1406-1410. [17] Altafini C. Consensus problems on networks with antagonistic interactions. IEEE Trans. Autom. Control, 2013, 58(4): 935-946. [18] Wasserman S, Faust K. Social Network Analysis: Methods Applications. Cambridge: Cambridge Univ. Press, 1994. [19] Liu J, Chen X, Basar T, et al. Exponential convergence of the discrete-and continuous-time Altafini models. IEEE Trans. Autom. Control, 2017, 62(12): 6168-6182. [20] Meng D, Jia Y, Du J. Finite-time consensus for multiagent systems with cooperative and antagonistic interactions. IEEE Trans. Neural Netw. Learning Syst., 2016, 27(4): 762-770. [21] Shi X, Lu J, Liu Y, et al. A new class of fixed-time bipartite consensus protocols for multi-agent systems with antagonistic interactions. J. Frankl. Inst., 2018, 355(12): 5256-5271. [22] Zhang Y, Liu Y. Nonlinear second-order multi-agent systems subject to antagonistic interactions without velocity constraints. Appl. Math. Comput., 2020, 364: 124667. [23] Wen G, Wang H, Yu X, et al. Bipartite tracking consensus of linear multi-agent systems with a dynamic leader. IEEE Trans. Circuits Syst. II, Exp. Briefs, 2018, 65(9): 1204-1208. [24] Bhowmick S, Panja Z. Leader-follower bipartite consensus of linear multiagent systems over a signed directed graph. IEEE Trans. Circuits Syst. II, Exp. Briefs, 2019, 66(8): 1436-1440. [25] Meng D, Du M, Jia Y. Interval bipartite consensus of networked agents associated with signed digraphs. IEEE Trans. Autom. Control, 2016, 61(12): 3755-3770. [26] Zou W, Qian K, Xiang Z. Fixed-time consensus for a class of heterogeneous nonlinear multi-agent systems. IEEE Trans. Circuits Syst. II, Exp. Briefs, 2020, 67(7): 1279-1283. [27] Wang H, Yu W, Wen G, et al. Fixed-time consensus of nonlinear multi-agent systems with general directed topologies. IEEE Trans. Circuits Syst. II, Exp. Briefs, 2019, 66(9): 1587-1591. [28] Fu J, Wang J. Fixed-time coordinated tracking for second-order multi-agent systems with bounded input uncertainties. Syst. and Contr. Lett., 2016, 93: 1-12. [29] Zuo Z, Tian B, Defoort M, et al. Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics. IEEE Trans. Autom. Control, 2018, 63(2): 563-570. [30] Gong P, Han Q L. Fixed-time bipartite consensus tracking of fractional-order multi-agent systems with a dynamic leader. IEEE Trans. Circuits Syst. II, Exp. Briefs, 2020, 67(10): 2054-2058. [31] Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control, 2012, 57(8): 2106-2110. [32] Becerra H M, Vázquez C R, Arechavaleta G, et al. Predefined-time convergence control for high-order integrator systems using time base generators. IEEE Trans. Control Syst. Technol., 2018, 26(5): 1866-1873. [33] Ning B, Han Q L, Zuo Z. Bipartite consensus tracking for second-order multiagent systems: A time-varying function-based preset-time approach. IEEE Trans. Autom. Control, 2021, 66(6): 2739-2745. [34] Li Z, Wen G, Duan Z, et al. Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs. IEEE Trans. Autom. Control, 2015, 60(4): 1152-1157. |
[1] | 刘梦洁, 彭丹. 具有混合时变时滞的2-D离散时间非线性切换系统的H∞控制问题研究[J]. 系统科学与数学, 2022, 42(10): 2774-2793. |
[2] | 于强, 胡军, 陈东彦. 具有衰减测量和概率通讯延迟的事件触发分布式一致滤波[J]. 系统科学与数学, 2022, 42(9): 2279-2296. |
[3] | 常绪成, 苗满香. 分户热计量建筑节能热舒适经济模型预测控制研究[J]. 系统科学与数学, 2022, 42(9): 2297-2311. |
[4] | 颛美斐, 陈东彦, 胡军. 具有衰减测量和随机时滞的离散非线性复杂网络的保概率集员滤波[J]. 系统科学与数学, 2022, 42(8): 1960-1972. |
[5] | 李莉, 季鹏成, 龚炜, 赵慧, 许佳, 于青云. 复杂系统近临界态分析与调控综述[J]. 系统科学与数学, 2022, 42(6): 1423-1437. |
[6] | 吴磊, 康英伟. 基于深度强化学习的湿法脱硫系统运行优化[J]. 系统科学与数学, 2022, 42(5): 1067-1087. |
[7] | 杜亚男,梁振英,徐玉镜. 基于视觉伺服的不确定链式系统的指数镇定[J]. 系统科学与数学, 2016, 36(11): 1837-1850. |
[8] | 齐雪,张利军,赵杰梅. Serret-Frenet坐标系下AUV自适应路径跟踪控制[J]. 系统科学与数学, 2016, 36(11): 1851-1864. |
[9] | 傅勤. 大型互联非线性分布参数系统的分散迭代学习控制[J]. 系统科学与数学, 2016, 36(10): 1557-1573. |
[10] | 王平,贾英民. 具有有界输入领航者的二阶非线性多智能体系统的协调跟踪[J]. 系统科学与数学, 2016, 36(9): 1376-1387. |
[11] | 曹少中,涂序彦. 多变量协调控制理论研究与发展[J]. 系统科学与数学, 2016, 36(9): 1476-1486. |
[12] | 李超,李天思,刘奇芳,陈虹. 基于数据驱动的双离合器式自动变速器换挡过程控制[J]. 系统科学与数学, 2016, 36(8): 1081-1093. |
[13] | 骆吉安,彭 冬亮, 薛安克. 一种渐近最优的单站AOA/TDOA目标运动分析算法[J]. 系统科学与数学, 2016, 36(7): 937-947. |
[14] | 杨东,赵军. 带有Markovian跳变参数和执行器故障的切换LPV系统有限时间可靠控制[J]. 系统科学与数学, 2016, 36(3): 349-360. |
[15] | 刘凯,慕小武. 有限通信数据率下二阶连续多自主体系统的一致性研究[J]. 系统科学与数学, 2016, 36(3): 381-389. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||