• • 上一篇
严静1, 陈雪平1, 张敏珏1, 王晓迪2
严静, 陈雪平, 张敏珏, 王晓迪. 一类二阶模型下中心复合设计的预测方差[J]. 系统科学与数学, 2022, 42(11): 3107-3118.
Yan Jing, Chen Xueping, Zhang Minjue, Wang Xiaodi. Prediction Variance Analysis of a Class of Central Composite Designs Under the Second-Order Model[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(11): 3107-3118.
Yan Jing1, Chen Xueping1, Zhang Minjue1, Wang Xiaodi2
MR(2010)主题分类:
分享此文:
[1] Box G E, Wilson K B. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society: Series B $($Methodological$)$, 1951, 13(1): 1-38. [2] Box G E, Hunter J S. Multi-factor experimental designs for exploring response surfaces. The Annals of Mathematical Statistics, 1957, 28(1): 195-241. [3] Box M J, Draper N R. Factorial designs, the |X'X| criterion, and some related matters. Technometrics, 1971, 13(4): 731-742. [4] Box G E P, Draper N R. Empirical Model Building and Response Surfaces. New York: John Wiley, 1987. [5] Box G E P, Behnken D W. Some new three level designs for the study of quantitative variables. Technometrics, 1960, 2(2): 455-475. [6] Draper N R, Lin D K J. Small response-surface designs. Technometrics, 1990, 32(2): 187-194. [7] Morris M D. A class of three-level experimental designs for response surface modeling. Technometrics, 2000, 42(2): 111-121. [8] Xu H, Jaynes J, Ding X. Combining two-level and three-level orthogonal arrays for factor screening and response surface exploration. Statistica Sinica, 2014, 24(1): 269-289. [9] Giovannitti-Jensen A, Myers R H. Graphical assessment of the prediction capability of response surface designs. Technometrics, 1989, 31(2): 159-171. [10] Borkowski J J. Spherical prediction-variance properties of central composite and Box-Behnken designs. Technometrics, 1995, 37(4): 399-410. [11] Liang L, Anderson-Cook C, Robinson T, et al. Three-dimensional variance dispersion graphs for split-plot designs. Journal of Computational and Graphical Statistics, 2006, 15(4): 757-778. [12] Park Y, Richardson D, Montgomery D, et al. Prediction variance properties of second-order designs for cuboidal regions. Journal of Quality Technology, 2005, 37(4): 253-266. [13] Vining G G, Myers R H. A graphical approach for evaluating response surface designs in terms of the mean squared error of prediction. Technometrics, 1991, 33(3): 315-326. [14] Trinca L A, Gilmour S G. Variance dispersion graphs for comparing blocked response surface designs. Journal of Quality Technology, 1998, 30(4): 314-327. [15] Wesley W R, Simpson J R, Parker P A, et al. Maximum and minimum prediction variance for spherical and cuboidal split plot designs. Communications in Statistics — Theory and Methods, 2009, 38(13): 2251-2266. [16] Huang H. Multi-drug combination designs with experiments in silico. Statistics and Its Interface, 2021, 14(4): 373-388. [17] Frey D D, Engelhardt F, Greitzer E M. A role for “one factor at a time” experimentation in parameter designs. Research in Engineering Design, 2003, 14: 65-74. [18] Bergman R S, Cox C W, DePriest D J, et al. Effect of process variations on incandescent lamp performance. Journal of the Illuminating Engineering Society, 2013, 19(2): 132-141. [19] Shearer G, Tzoganakis C. Free radical hydrosilylation of polypropylene. Journal of Applied Polymer Science, 1998, 65(3): 439-447. [20] Admassu W, Tom B. Feasibility of using natural fishbone apatite as a substitute for hydroxya-patite in remediating aqueous heavy metals. Journal of Hazardous Materials, 1999, 69(2): 187-196. [21] 郭瑞, 张建方. 单因素轮换法的一个调查研究. 数理统计与管理, 2008, 27(3): 432-438. (Guo R, Zhang J F. A research on one-factor-at-a-time expeirmentation. Application of Statistics and Mangement, 2008, 27(3): 432-438. [22] Zhou Y D, Xu H. Composite designs based on orthogonal arrays and definitive screening designs. Journal of the American Statistical Association, 2016, 112(520): 1675-1683. [23] Chen X P, Guo B, Liu M Q, et al. Robustness of orthogonal-array based composite designs to missing data. Journal of Statistical Planning and Inference, 2018, 194: 15-24. [24] Zhang X R, Liu M Q, Zhou Y D. Orthogonal uniform composite designs. Journal of Statistical Planning and Inference, 2020, 206: 100-110. [25] Fang K T, Zhang Y T. Generalized Multivariate Analysis. Beijing and Berlin: Science Press and Springer-Verlag, 1990. [26] Draper N R, Guttman I. An index of rotatability. Technometrics, 1988, 30(1): 105-111. [27] 陈雪平,林金官,黄性芳,等.区组大小不等的主效应设计. 中国科学:数学, 2017, 47(6): 765-778. (Chen X P, Lin J G, Huang X F, et al. Main-effect plans with blocks of natural size. SCIENTIA SINICA Mathematica, 2017, 47(6): 765-778.) |
[1] | 马海南,陈雪平. 部分纯净主效应设计[J]. 系统科学与数学, 2020, 40(2): 243-251. |
[2] | 熊子康,刘力惟,宁建辉,覃红. 混料切片试验设计[J]. 系统科学与数学, 2020, 40(2): 262-274. |
[3] | 李博文,肖意可,贾锴,陈璇,段晓君,李修和. 约束离散空间的试验设计方案研究[J]. 系统科学与数学, 2020, 40(2): 275-280. |
[4] | 陈雪平,张应山. 强度2混合水平正交表交互作用的\混杂度量[J]. 系统科学与数学, 2012, 32(7): 901-907. |
[5] | 庞善起;张应山. 标准混合差集矩阵的构造[J]. 系统科学与数学, 2010, 30(3): 410-416. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||