• • 上一篇
崔梦瑶, 高健, 马芳卉, 孟祥蕊
崔梦瑶, 高健, 马芳卉, 孟祥蕊. 有限链环上的广义拟循环码[J]. 系统科学与数学, 2022, 42(11): 3134-3148.
CUI Mengyao, GAO Jian, MA Fanghui, MENG Xiangrui. On Generalized Quasi-Cyclic Codes over Finite Chain Rings[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(11): 3134-3148.
CUI Mengyao, GAO Jian, MA Fanghui, MENG Xiangrui
MR(2010)主题分类:
分享此文:
[1] Hammons A, Kumar P, Calderbank A, et al. The $\mathbb{Z}_4$-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Transactions on Information Theory, 1994, 40(2): 301-319. [2] Dinh H, Lopez-permouth S. Cyclic and negacyclic codes over finite chain rings. IEEE Transactions on Information Theory, 2004, 50: 1728-1743. [3] Shi M J, Zhu S X, Yang S L. A class of optimal $p$-ary codes from one-weight codes over $\mathbb{F}_p[u]/\langle u^m\rangle$. Journal of the Franklin Institute, 2013, 350(5): 929-937. [4] Shi M J, Wu R S, Liu Y, et al. Two and three weight codes over $\mathbb{F}_p + u\mathbb{F}_p$. Cryptography and Communications, 2017, 9(5): 637-646. [5]Meng X R, Gao J. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2021, doi: 10.3934/amc.2020124. [6] Siap I, Abualrub T, Aydin N. Quaternary quasi-cyclic codes with even length components. Ars Combinatoria, 2011, 101: 425-434. [7] Ling S, Solé P. On the algebra structure of quasi-cyclic codes I: Finite fields. IEEE Transactions on Information Theory, 2001, 47: 2751-2760. [8] Ling S, Solé P. On the algebraic structure of quasi-cyclic codes II: Chain rings. Designs, Codes and Cryptography, 2003, 30: 113-130. [9] Ling S, Solé P. On the algebra structure of quasi-cyclic codes III: Generator theory. IEEE Transactions on Information Theory, 2005, 51: 2692-2700. [10] Hou X T, Gao J. $n$-dimension quasi-twisted codes of arbitrary length over finite fields. Journal of Applied Mathematics and Computing, 2021, doi: 10.1007/s12190-021-01540-x. [11] Gao J, Shen L Z. A class of 1-generator quasi-cyclic codes over finite chain rings. International Journal of Computer Mathematics, 2016, 93(1): 40-54. [12] Shi M J, Neri A, Solé P. How many weights can a quasi-cyclic code have? IEEE Transactions on Information Theory, 2020, 66(11): 6855-6862. [13] Shi M J, Zhang Y P. Quasi-twisted codes with constacyclic constituent codes. Finite Fields and Their Applications, 2016, 39: 159-178. [14] Shi M J, Qian L Q, Solé P. On self-dual negacirculant codes of index two and four. Designs, Codes and Cryptography, 2018, 86: 2485-2494. [15] Siap I, Kulhan N. The structure of generalized quasi-cyclic codes. Applied Mathematics E-Notes, 2005, 5: 24-30. [16] Esmaeili M, Yari S. Generalized quasi-cyclic codes: Structural properties and code construction. Applicable Algebra in Engineering, Communication and Computing, 2009, 20: 159-173. [17] Cao Y. Generalized quasi-cyclic codes over Galois rings: Structural properties and enumeration. Applicable Algebra in Engineering, Communication and Computing, 2011, 22: 219-233. [18] Gao J, Fu F W, Shen L Z, et al. Some results on generalized quasi-cyclic codes over $\mathbb{F}_q+u\mathbb{F}_q$. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2014, E97A(4): 1005-1011. [19] Cao Y. Structural properties and eumeration of 1-generator generalized quasi-cyclic codes. Designs, Codes and Cryptography, 2011, 60: 67-79. [20] Wu T T, Gao J, Fu F-W. 1-generator generalized quasi-cyclic codes over $\mathbb{Z}_4$. Cryptography and Communications, 2017, 9: 291-299. [21] Güneri C, Özbudak F, Özkaya B, et al. Structure and performance of generalized quasi-cyclic codes. Finite Fields and Their Applications, 2017, 47: 183-202. [22] Borges J, Fernández-Córdoba C, Ten-Valls R. $\mathbb{Z}_2$-double cyclic codes. Designs, Codes and Cryptography, 2018, 86: 463-479. [23] Bae S, Kang P L, Li C. On normalized generating sets for GQC codes over $\mathbb{Z}_2$. Finite Fields and Their Applications, 2017, 45: 285-300. [24] Gao J, Shi M J, Wu T T, et al. On double cyclic codes over $\mathbb{Z}_4$. Finite Fields and Their Applications, 2016, 39: 233-250. [25] Gao J, Hou X T. $\mathbb{Z}_4$-double cyclic codes are asymptotically good. IEEE Communications Letters, 2020, 24(8): 1593-1597. [26] Yao T, Zhu S X, Pang B. Triple cyclic codes over $\mathbb{F}_q+u\mathbb{F}_q$. International Journal of Foundations of Computer Science, 2021, 32(2): 115-135. [27] Gao J, Kong Q. 1-Generator quasi-cyclic codes over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}+\cdots+u^{s-1}\mathbb{F}_{p^m}$. Journal of the Franklin Institute, 2013, 350(10): 3260-3276. [28] Wan Z X. Lectures on Finite Fields and Galois Rings. Singapore: World Scientific Pub Co Inc, 2003. [29] Diao L Y, Gao J, Lu J Y. Some results on $\mathbb{Z}_{p}\mathbb{Z}_{p}[v]$-additive cyclic codes. Advances in Mathematics of Communications, 2020, 14(4): 555-572. [30] Hou X T, Gao J. $\mathbb{Z}_{p}\mathbb{Z}_{p}[v]$-additive cyclic codes are asymptotically good. Journal of Applied Mathematics and Computing, 2021, 66: 871-884. |
[1] | 吴波, 施敏加, 李淑宇, 杨绍波, 左其尚. $2$-Lee 重量 $\mathbb{Z}_p\mathbb{Z}_p[u]$-加性码[J]. 系统科学与数学, 2021, 41(9): 2678-2686. |
[2] | 刘丽,徐溢. 有限域上的广义准多项式码[J]. 系统科学与数学, 2019, 39(3): 470-476. |
[3] | 袁文红. 伽罗瓦内积下LCD常循环码和LCD MDS码的研究[J]. 系统科学与数学, 2018, 38(12): 1464-1476. |
[4] | 李兰强,刘丽. 环${Z}_{ 4}+{u}{Z}_{ 4}$上一类重根常循环码[J]. 系统科学与数学, 2017, 37(3): 870-881. |
[5] | 黄炎,开晓山,宛金龙. 环$\mathbb{Z}_{p^2}$上的循环自正交码的构造[J]. 系统科学与数学, 2016, 36(12): 2473-2480. |
[6] | 高莹,梅佳. 两类基于完全非线性函数的线性码[J]. 系统科学与数学, 2014, 34(2): 129-134. |
[7] | 高莹. 对偶单调张成方案的有效构造[J]. 系统科学与数学, 2011, 31(4): 466-474. |
[8] | 余德民;卢才辉. Virasoro李代数的子代数间的同构及生成元[J]. 系统科学与数学, 2008, 28(1): 24-029. |
[9] | 骆建文;鲁世杰. 弱闭T(N)-模的预零化子的线性等距映象群[J]. 系统科学与数学, 2003, 23(3): 426-432. |
[10] | 姚景齐. 指数有界C-半群的共轭半群[J]. 系统科学与数学, 1999, 19(3): 319-322. |
[11] | 徐西祥. 一列Liouville可积的有限维Hamilton系统族[J]. 系统科学与数学, 1998, 18(2): 133-139. |
[12] | 彭济根. 抽象Cauchy问题的适定性与算子半群[J]. 系统科学与数学, 1998, 18(2): 225-229. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||