• •
李文平, 朱荷蕾
李文平, 朱荷蕾. 面向群智感知隐私保护的联邦典型相关分析方法[J]. 系统科学与数学, 2022, 42(11): 2859-2873.
LI Wenping, ZHU Helei. A Federal-Based Canonical Correlation Analysis Approach for Privacy Preserving in Crowdsensing[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(11): 2859-2873.
LI Wenping, ZHU Helei
MR(2010)主题分类:
分享此文:
[1] Guo B, Wang Z, Yu Z W, et al. Mobile crowd sensing and computing: The review of an emerging human-powered sensing paradigm. ACM Computing Surveys, 2015, 48(1): 1-31. [2] 孙佳琛, 王金龙, 陈瑾, 等. 群体智能协同通信:愿景、模型 和关键技术. 中国科学:信息科学, 2020, 50(3): 307-317. (Sun J C, Wang J L, Chen J, et al. Cooperative communication based on swarm intelligence: Vision, model, and key technology. Scientia Sinica Informationis, 2020, 50(3): 307-317.) [3] 安健, 彭振龙, 桂小林, 等. 群智感知中基于公交系统的 任务分发机制研究. 计算机学报, 2019, 42(2): 65-78. (An J, Peng Z L, Gui X L, et al. Research on task distribution mechanism based on public transit system in crowd sensing. Chinese Journal of Computers, 2019, 42(2): 65-78.) [4] 景瑶, 郭斌, 陈荟慧, 等. CrowdTracker: 一种基于移动群智 感知的目标跟踪方法. 计算机研究与发展, 2019, 56(2): 328-337. (Jing Y, Guo B, Chen H H, et al. CrowdTracker: Object tracking using mobile crowd sensing. Journal of Computer Research and Development, 2019, 56(2): 328-337.) [5] 王健, 刘嘉欣, 赵国生, 等. 移动群智感知中基于协同排序 的任务推荐方法. 电子学报, 2021, 49(10): 2012-2019. (Wang J, Liu J X, Zhao G S, et al. Task recommendation method based on collaborative ranking in mobile crowd sensing. Acta Electronica Sinica, 2021, 49(10): 2012-2019.) [6] Warnat H S, Schultze H, Shastry K L, et al. Swarm learning for decentralized and confidential clinical machine learning. Nature, 2021, 594(7862): 265-270. [7] 熊金波, 毕仁万, 田有亮, 等. 移动群智感知安全与隐私:模 型、进展与趋势. 计算机学报, 2021, 44(9): 1949-1966. (Xiong J B, Bi R W, Tian Y L, et al. Security and privacy in mobile crowdsensing: Models, progresses, and trends. Chinese Journal of Computers, 2021, 44(9): 1949-1966.) [8] Vahdat N H, Asani E, Mahmoodian Z, et al. Context-aware computing for mobile crowd sensing: A survey. Future Generation Computer Systems - The International Journal of Escience, 2019, 99(12): 321-332. [9] 史鼎元, 王晏晟, 郑鹏飞, 等. 面向企业数据孤岛 的联邦排序学习. 软件学报, 2021, 32(3): 669-688. (Shi D Y, Wang Y S, Zheng P F, et al. Cross-silo federated learning-to- rank. Journal of Software, 2021, 32(3): 669-688.) [10] 周传鑫, 孙奕, 汪德刚, 等. 联邦学习研究综述. 网络与信息安全学报, 2021, 7(5): 1-16. (Zhou C X, Sun Y, Wang D G, et al. Survey of federated learning research. Chinese Journal of Network and Information Security, 2021, 7(5): 1-16.) [11] Zhou B, Chen L, Zhao S, et al. Spatio-temporal analysis of urban crime leveraging multisource crowdsensed data. Personal and Ubiquitous Computing, 2021, 25(1): 1-14. [12] Marchang N, Tripathi R. KNN-ST: Exploiting spatio-temporal correlation for missing data inference in environmental crowd sensing. IEEE Sensors Journal, 2021, 21(3): 3429-3436. [13] Hotelling H. Relations between two sets of variates. Biometrika, 1936, 28(3/4): 321-377. [14] 陈志文, 李学明, 徐绍龙, 等. 基于特征相关性的牵引系统 主回路接地故障诊断. 自动化学报, 2021, 47(7): 1516-1529. (Chen Z W, Li X M, Xu S L, et al. Feature correlation-based ground fault diagnosis method for main circuit of traction system. Acta Automatica Sinica, 2021, 47(7): 1516-1529.) [15] Huang P, Lu J. Learning trajectory patterns via canonical correlation analysis. International Journal of Cognitive Informatics and Natural Intelligence, 2021, 15(2): 1-17. [16] 周航星, 陈松灿. 有序判别典型相关分析. 软件学报, 2014, 25(9): 2018-2025. (Zhou H X, Chen S C. Ordinal discriminative canonical correlation analysis. Journal of Software, 2014, 25(9): 2018-2025.) [17] Pehlevan C, Zhao X, Sengupta A M, et al. Neurons as canonical correlation analyzers. Frontiers in Computational Neuroscience, 2020, 14(1): 55. [18] 王宇霞, 赵清杰, 赵留军. 基于FREAK和P3CA的鲁棒目标跟踪. 计 算机学报, 2015, 38(6): 1188-1201. (Wang Y X, Zhao Q J, Zhao L J. Robust object tracking based on FREAK and P3CA. Chinese Journal of Computers, 2015, 38(6): 1188-1201.) [19] 刘建伟, 孙正康, 刘泽宇, 等. 核典型关联性分析相关特征提取与核逻辑斯 蒂回归域自适应学习. 电子学报, 2016, 44(12): 2908-2915. (Liu J W, Sun Z K, Liu Z Y, et al. Domain adaptation learning with kernel logistic regression and kernel canonical correiation anaiysis. Acta Electronica Sinica, 2016, 44(12): 2908-2915.) [20] 孙平, 徐宗本, 申建中. 基于核化原理的非线性典型相关判别分析. 计算机学报, 2004, 27(6): 789-795. (Sun P, Xu Z B, Shen J Z. Nonlinear canonical correlation analysis for discrimination based on kernel methods. Chinese Journal of Computers, 2004, 27(6): 789-795.) [21] 杨静, 李文平, 张健沛. 基于秩2更新的多维数据流典型相关跟踪算法. 电子学报, 2012, 40(9): 1765-1774. (Yang J, Li W P, Zhang J P. A tracking algorithm based on rank two modifications for canonical correlation analysis of multidimensional data streams. Acta Electronica Sinica, 2012, 40(9): 1765-1774.) [22] 侯书东, 孙权森. 稀疏保持典型相关分析及在特征融合中的应用. 自动化学报, 2012, 38(4): 659-665. (Hou S D, Sun Q S. Sparsity preserving canonical correlation analysis with application in feature fusion. Acta Automatica Sinica, 2012, 38(4): 659-665.) [23] 潘玉, 陈晓红, 李舜酩, 等. 块增量典型相关分析. 计算机科学与探索, 2022, 16(8): 1809-1818. (Pan Y, Chan X H, Li S M, et al. Chunk incremental canonical correlation analysis. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1809-1818.) [24] 姜云卢, 邓罡, 文诗涵, 等. 高维稳健典型相关分析研究与应用. 系统 科学与数学, 2021, 41(10): 2965-2976. (Jiang Y L, Deng G, Wen S H, et al. Research and application of high-dimension robust canonical correlation analysis. Journal of Systems Science and Mathematical Sciences, 2021, 41(10): 2965-2976.) [25] Wang W, Zhou Y H. Eigenvector-based sparse canonical correlation analysis: Fast computation for estimation of multiple canonical vectors. Journal of Multivariate Analysis, 2021, 185: 104781. [26] Chen J, Wang G, Giannakis G B. Graph multiview canonical correlation analysis. IEEE Transactions on Signal Processing, 2019, 67(11): 2826-2838. [27] Kaloga Y, Borgnat P, Chepuri S P, et al. Variational graph autoencoders for multiview canonical correlation analysis. Signal Processing, 2021, 188: 108182. [28] 苏树智, 谢军, 平昕瑞, 等. 图强化典型相关分析及在图像识别中的应用. 电子与信息学报, 2021, 43(11): 3342-3349. (Su S Z, Xie J, Ping X R, et al. Graph enhanced canonical correlation analysis and its application to image recognition. Journal of Electronics and Information Technology, 2021, 43(11): 3342-3349.) [29] 许欢, 苏树智, 颜文婧, 等. 面向图像识别的测地局部典型相关分析方法. 电子与信息学报, 2020, 42(11): 2813-2818. (Xu H, Sun S Z, Yan W J, et al. A geodesic locality canonical correlation analysis method for image recognition. Journal of Electronics and Information Technology, 2020, 42(11): 2813-2818.) [30] Gloaguen A, Philippe C, Frouin V, et al. Multiway generalized canonical correlation analysis. Biostatistics, 2022, 23(1): 240-256. [31] Hardoon D R, Szedmak S, Shawe T J. Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 2004, 16(12): 2639-2664. [32] Ewerbring L M, Luk F T. Canonical correlations and generalized SVD: Applications and new algorithms. Journal of Computational and Applied Mathematics, 1989, 27(1-2): 37-52. [33] Golub G H. Matrix decompositions and statistical calculations. Statistical Computation. New York: Academic Press, 1969, 365-397. |
[1] | 姜云卢, 邓罡, 文诗涵, 刘峻成. 高维稳健典型相关分析研究与应用[J]. 系统科学与数学, 2021, 41(10): 2965-2976. |
[2] | 洪志敏,闫在在. 估计敏感特征比例和敏感指标均值的问卷调查技术[J]. 系统科学与数学, 2012, 32(3): 344-354. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||