• • 上一篇
高丽, 蒋雨芯, 盛培根, 魏先华
高丽, 蒋雨芯, 盛培根, 魏先华. 多源异构数据图像整合预测方法研究——以黄金价格预测为例[J]. 系统科学与数学, 2022, 42(11): 3073-3093.
GAO Lijun, JIANG Yuxin, SHENG Peigen, WEI Xianhua. Convolutional Neural Network Applied to Gold Price Forecasting with an Image Integration Methods Based on Multi-Sources and Heterogeneous Data[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(11): 3073-3093.
GAO Lijun, JIANG Yuxin, SHENG Peigen, WEI Xianhua
MR(2010)主题分类:
分享此文:
[1] Canziani A, Paszke A, Culurciello E. An analysis of deep neural network models for practical applications. 29th Conference on Neural Information Processing Systems (NIPS 2016), ArXiv: 1605.07678, 2017. [2] Chen C H. Neural networks for financial market prediction. Proceedings of 1994 IEEE International Conference on Neural Networks. Orlando, FL, USA: IEEE, 1994, 1199-1202. [3] Zhang G P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 2003, 50: 159-175. [4] 张焱, 欧阳一鸣, 王浩, 等. 数据挖掘在金融领域中的应用 研究. 计算机工程与应用, 2004, (18): 208-211. (Zhang Y, Ouyang Y M, Wang H, et al. Application of data mining in the financial field. Computer Engineering and Applications, 2014, (18): 208-211.) [5] Parisi A, Parisi F, Diaz D. Forecasting gold price changes: Rolling and recursive neural network models. Journal of Multinational Financial Management, 2008, 18(5): 477-487. [6] Kristjanpoller W, Minutolo M C. Gold price volatility: A forecasting approach using the artificial neural network-GARCH model. Expert Systems with Applications, 2015, 42(20): 7245-7251. [7] 李梦泽, 朱冬元. 基于深度学习集成方法(SDAE-B)模型的黄金价 格走势预测实证分析. 中国资产评估, 2021, (1): 12-19. (Li M Z, Zhu D Y. Empirical analysis of gold price prediction based on deep learning integrated method (SDAE-B) model. Appraisal Journal of China, 2021, (1): 12-19.) [8] 韩旭, 杨珊, 王喜梅. 基于商空间的黄金价格SVM模型预测. 黄 金科学技术, 2020, 1(28): 148-157. (Han X, Yang S, Wang X M. SVM model prediction of gold price based on quotient space. Gold Science and Technology, 2020, 1(28): 148-157.) [9] 郑鹏. 基于改进的PEEMD-BPNN模型的黄金价格走势研究. 学位论文. 成 都理工大学, 成都, 2019. (Zheng P. Research on gold price trend based on improved PEEMD-BPNN model. Master Thesis. Chengdu University of Technology, Chengdu, 2019.) [10] Li Y, Wang S, Wei Y, et al. A new hybrid VMD-ICSS-BiGRU approach for gold futures price forecasting and algorithmic trading. IEEE Transactions on Computational Social Systems, 2021, 1-12. [11] Sezer O B, Gudelek M U, Ozbayoglu A M. Financial time series forecasting with deep learning: A systematic literature review: 2005-2019. Applied Soft Computing, 2020, 90: 106181. [12] 刘璐, 娄磊, 刘先俊, 等. 基于LSTM的COMEX黄金期货价格预测 对比研究. 长春理工大学学报(自然科学版), 2021, 44(2): 129-135. (Liu L, Lou L, Liu X J, et al. A comparative study of COMEX gold futures price forecast based on LSTM. Journal of Changchun University of Science and Technology $($Natural Science Edition), 2021, 44(2): 129-135.) [13] Troiano L, Villa E M, Loia V. Replicating a trading strategy by means of LSTM for financial industry applications. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3226-3234. [14] 孙舒蓉. 基于k线图机器识别的趋势预测及量化策略设计. 硕士 论文. 上海师范大学, 上海, 2020. (Sun S R. Trend prediction and quantitative strategy design based on k-graph machine recognition. Master Thesis. Shanghai Normal University, Shanghai, 2020.) [15] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems $($NIPS$)$, Communications of the ACM, 2017, 60(6): 84-90. [16] Karpathy A, Toderici G, Shetty S, et al. Large-scale video classification with convolutional neural networks. IEEE Conference Publication, 2014. [17] Lawrence S, Giles C L, Tsoi A C, et al. Face recognition: A convolutional neural-network approach. IEEE Transactions on Neural Networks, 1997, 8(1): 98-113. [18] Ciresan D C, Meier U, Gambardella L M, et al. Convolutional neural network committees for handwritten character classification. International Conference on Document Analysis and Recognition, 2011. [19] Kim Y. Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar: Association for Computational Linguistics, 2014, 1746-1751. [20] Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modelling sentences. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, Maryland: Association for Computational Linguistics, 2014, 655-665. [21] Doering J, Fairbank M, Markose S. Convolutional neural networks applied to high-frequency market microstructure forecasting. 2017 9th Computer Science and Electronic Engineering (CEEC), Colchester: IEEE, 2017, 31-36. [22] Gunduz H, Yaslan Y, Cataltepe Z. Intraday prediction of Borsa istanbul using convolutional neural networks and feature correlations. Knowledge-Based Systems, 2017, 137: 138-148. [23] Sezer O B, Ozbayoglu A M. Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach. Applied Soft Computing, 2018, 70: 525-538. [24] Dingli A, Fournier K S. Financial time series forecasting — A deep learning approach. International Journal of Machine Learning and Computing, 2017, 7(5): 118-122. [25] Vidal A, Kristjanpoller W. Gold volatility prediction using a CNN-LSTM approach. Expert Systems with Applications, 2020, 157: 113481. [26] 惠国保. 一种基于深度学习的多源异构数据融合方法. 现代导 航, 2017, 3(8): 218-223. (Hui G B. Method of multi-source heterogeneous data fusion based on deep learning. Modern Navigation, 2017, 3(8): 218-223.) [27] 耿立校, 刘丽莎, 李恒昱. 多源异构数据融合驱动的股票指 数预测研究. 计算机工程与应用, 2021, 57(20): 142-149. (Geng L X, Liu L S, Li H Y. Research on stock index prediction driven by multi-source heterogeneous data fusion. Computer Engineering and Applications, 2021, 57(20): 142-149.) [28] 姜建华, 洪年松, 张广云. 一种多源异构数据融合方法及 其应用研究. 电子设计工程, 2016, 24(12): 33-36. (Jiang J H, Hong N S, Zhang G Y. Research on multi-source heterogeneous data fusion and its application. Electronic Design Engineering, 2016, 24(12): 33-36.) [29] 刘运. 基于循环神经网络的多源异构大数据融合模型构建.内蒙 古民族大学学报(自然科学版), 2021, 36(3): 204-210. (Liu Y. Construction of a multi-source heterogeneous big data fusion model based on cyclic neural network. Journal of Inner Mongolia University for Nationalities, 2021, 36(3): 204-210.) [30] Jiang J, Kellly B T, Xiu D. (Re-)Imag(in)ing Price Trends. Chicago Booth Research Paper No. 21-01, Available at SSRN: https://ssrn.com/abstract=3756587 or http://dx.doi.org/10.2139/ssrn.3756587, 2020. [31] Zhao L T, Wang Y, Guo S Q, et al. A novel method based on numerical fitting for oil price trend forecasting. Applied Energy, 2018, 220: 154-163. [32] Chen Y C, Rogoff K S, Rossi B. Can exchange rates forecast commodity prices?. The Quarterly Journal of Economics, 2010, 125: 1145-1194. [33] Reboredo J C. Is gold a safe haven or a hedge for the US dollar?. Journal of Banking & Finance, 2013, 37: 2665-2676. [34] Mo B, Nie H, Jiang Y. Dynamic linkages among the gold market, US dollar and crude oil market. Physica A: Statistical Mechanics and Its Applications, 2018, 491: 984-994. [35] Batten J A, Ciner C, Lucey B M. The macroeconomic determinants of volatility in precious metals markets. Resources Policy, 2010, 35: 65-71. [36] Shafiee S, Topal E. An overview of global gold market and gold price forecasting. Resources Policy, 2010, 35(3): 178-189. [37] Behmiri N B, Manera M. The role of outliers and oil price shocks on volatility of metal prices. Resources Policy, 2015, 46: 139-150. [38] Ewing B T, Malik F. Volatility transmission between gold and oil futures under structural breaks. International Review of Economics & Finance, 2013, 25: 113-121. [39] Mensi W, Beljid M, Boubaker A, et al. Correlations and volatility spillovers across commodity and stock markets: Linking energies, food, and gold. Economic Modelling, 2013, 32: 15-22. [40] Malliaris A G, Malliaris M. What drives gold returns? A decision tree analysis. Finance Research Letters, 2015, 13: 45-53. [41] Yurdakul F, Sefa M. An econometric analysis of gold prices in turkey. Procedia Economics and Finance, 2015, 23: 77-85. [42] Tully E, Lucey B M. A power GARCH examination of the gold market. Research in International Business and Finance, 2007, 21(2): 316-325. [43] Han A, Hong Y, Wang S. Autoregressive conditional models for interval-valued time series data. The 3rd International Conference on Singular Spectrum Analysis and Its Applications, 2012. [44] Haque M A, Topal E, et al. Relationship between the gold price and the Australian Dollar-US Dollar exchange rate. Mineral Economics, 2015, 28: 65-78. [45] Ho R. Handbook of Univariate and Multivariate Data Analysis and Interpretation with SPSS. Boca Raton: Chapman & Hall/CRC, 2006. [46] Molugaram K, Rao G S. Chapter 6-Correlation and regression. Statistical Techniques for Transportation Engineering, 2017, 293-329. [47] Zhang P, Ci B. Deep belief network for gold price forecasting. Resources Policy, 2020, 69: 101806. [48] Wang X, Ma Y, Li W. The prediction of gold futures prices at the Shanghai futures exchange based on the MEEMD-CS-Elman model. SAGE Open, 2021, 11(1): 215824402110018. [49] Al-Dhuraibi W A, Ali J. Using classification techniques to predict gold price movement. 2018 4th International Conference on Computer and Technology Applications (ICCTA), Istanbul: IEEE, 2018, 127-130. |
[1] | 郭晓春, 马玉梅, 曹萍萍. 网络环境下考虑目标顾客偏好的服务产品选择方法[J]. 系统科学与数学, 2022, 42(7): 1769-1787. |
[2] | 王鑫, 王莹. 基于LSTM-CNN的中小企业信用风险预测[J]. 系统科学与数学, 2022, 42(10): 2698-2711. |
[3] | 王秋雨, 张举勇. 一种基于三维对齐方式的深度学习人脸识别算法[J]. 系统科学与数学, 2021, 41(7): 2035-2045. |
[4] | 王溪,明扬,洪奕光. 基于群论的深度卷积网络分析[J]. 系统科学与数学, 2019, 39(2): 219-227. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||