• • 上一篇
曹桃云1,2, 张日权3
曹桃云, 张日权. 非对称误差分布的贝叶斯累加回归树模型研究及应用[J]. 系统科学与数学, 2022, 42(11): 3119-3133.
CAO Taoyun, ZHANG Riquan. Research and Application of Bayesian Additive Regression Trees Model for Asymmetric Error Distribution[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(11): 3119-3133.
CAO Taoyun1,2, ZHANG Riquan3
MR(2010)主题分类:
分享此文:
[1] Collins J R. Robust estimation of a location parameter in the presence of asymmetry. Annals of Statistics, 1976, 4(1): 68-85. [2] Jaeckel L A. Robust estimates of location: Symmetry and asymmetric contamination. Annals of Mathematical Statistics, 1971, 42: 1020-1034. [3] Carroll R J. On estimating variances of robust estimators when the errors are asymmetric. Journal of the American Statistical Association, 1979, 74(367): 674-679. [4] Roger T F, Bolfarine H, Guillermo M F. The asymmetric alpha-power skew-t distribution. Symmetry, 2020, 12(1): 1-21. [5] Fu L Y, Wang Y G. Robust regression with asymmetric loss functions. Statistical Methods in Medical Research, 2021, 30(8): 1800-1815. [6] Chipman H A, George E I, McCulloch R E. BART: Bayesian additive regression trees. The Annals of Applied Statistics, 2010, 4(1): 266-298. [7] Wang G W, Zhang C X, Yin Q Y. RS-BART: A novel technique to boost the prediction ability of Bayesian additive regression trees. Chinese Journal of Engineering Mathematics, 2019, 36(4): 461-477. [8] Linero A R. Bayesian regression trees for high dimensional prediction and variable selection. Journal of the American Statistical Association, 2018, 113(522): 626-636. [9] Murray J S. Log-linear Bayesian additive regression trees for multinomial logistic and count regression models. Journal of the American Statistical Association, 2021, 116(534): 756-769. [10] Breiman L. Random forests. Machine Learning, 2001, 45: 5-32. [11] Kapelner A, Bleich J. Bartmachine: Machine learning with Bayesian additive regression trees. Journal of Statistical Software, 2016, 70(4): 1-40. [12] Friedman J H. Multivariate adaptive regression splines. Annals of Statistics, 1991, 19(1): 1-67. [13] 曹桃云, 陈敏琼. 基于学生化极差分布的随机森林变量选择研究. 统计 与信息论坛, 2021, 36(8): 15-22. (Cao T Y, Chen M Q. Variable selection in randon forests based on studentized range distribution. Journal of Statistics & Information, 2021, 36(8): 15-22.) [14] Mattos T, Garay A M, Lachos V H. Likelihood-based inference for censored linear regression models with scale mixtures of skew-normal distributions. Journal of Applied Statistics, 2018, 45(11): 2019-2066. |
[1] | 王冠鹏, 秦双燕, 崔恒建. 员工流失的影响因素分析与预测[J]. 系统科学与数学, 2022, 42(6): 1616-1632. |
[2] | 李山海, 吴艳雄, 王蓓, 徐岩, 刘玉龙. 基于GA-BP神经网络的信息技术业上市公司的成长性预测[J]. 系统科学与数学, 2022, 42(4): 854-866. |
[3] | 冯盼峰,温永仙. 基于随机森林算法的两阶段变量选择研究[J]. 系统科学与数学, 2018, 38(1): 119-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||