• • 上一篇    下一篇

具有损失厌恶偏好的Muthoo交替出价谈判博弈研究

谭春桥1, 冯中伟2, 胡礼梅3   

  1. 1. 南京审计大学商学院 南京 211815;
    2. 河南理工大学工 商管理学院能源经济研究中心 焦作 454000;
    3. 安徽科技学院管理学院 蚌埠 233000
  • 收稿日期:2021-09-15 修回日期:2021-12-29 出版日期:2022-04-25 发布日期:2022-06-18
  • 通讯作者: 冯中伟,Email:fzw881024@hpu.edu.cn.
  • 基金资助:
    国家自然科学基金(71971218,71671188)资助课题.

谭春桥, 冯中伟, 胡礼梅. 具有损失厌恶偏好的Muthoo交替出价谈判博弈研究[J]. 系统科学与数学, 2022, 42(4): 832-853.

TAN Chunqiao, FENG Zhongwei, HU Limei. Muthoo Alternating Offers Bargaining Game with Loss Aversion[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(4): 832-853.

Muthoo Alternating Offers Bargaining Game with Loss Aversion

TAN Chunqiao1, FENG Zhongwei2, HU Limei3   

  1. 1. School of Business, Nanjing Audit University, Nanjing 211815;
    2. School of Business Administration, Henan Polytechnic University, Jiaozuo 454000;
    3. School of Management, Anhui Science and Technology University, Bengbu 233000
  • Received:2021-09-15 Revised:2021-12-29 Online:2022-04-25 Published:2022-06-18
There exist a risk of breakdown in the real bargaining games. Muthoo developed an alternating-offer bargaining with a risk of breakdown under the assumption that players are rational. Lots of works on psychology show that decision makers are loss averse. To investigate the impact of loss aversion for players on bargaining game with a risk of breakdown, Muthoo’s alternating offers bargaining game is reconsidered. First, the highest rejected offer in the past is regarded as reference points, which makes the payoffs and equilibrium strategies depend on the history of bargaining. Then, a subgame perfect equilibrium is constructed, which depends on the history of bargaining through the current reference points. And its uniqueness is shown under assumptions: Strategies depending only on the current reference points, immediate acceptance of equilibrium offers and indifference between acceptance and rejection of such offers. Finally, a comparative statics of loss aversion coefficients is performed, and the convergence of the subgame perfect equilibrium for the probability of breakdown tending to zero is analyze. It is shown that a player benefits from loss aversion of the opponent and is hurt by loss aversion of himself.

MR(2010)主题分类: 

()
[1] Muthoo A. Bargaining Theory with Applications. Bargaining Theory with Applications. Cambridge:Cambridge University Press, 1999.
[2] Driesen B, Perea A, Peters H. Alternating offers bargaining with loss aversion. Mathematical Social Sciences, 2012, 64(2):103-118.
[3] von Neumann J, Morgenstern O. Theory of Games and Economic Behavior. Princeton:Princeton University Press, 1994.
[4] Kahneman D, Tversky A. Prospect theory:An analysis of decision under risk. Econometrica, 1979, 47(2):263-291.
[5] Tversky A, Kahneman D. Advances in prospect theory:Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 1992, 5(4):297-323.
[6] Shalev J. Loss aversion equilibrium. International Journal of Game Theory, 2000, 29(2):269-287.
[7] Peters H. A preference foundation for constant loss aversion. Journal of Mathematical Economics, 2012, 48:21-25.
[8] Liu W, Song S, Qiao Y, et al. The loss-averse newsvendor problem with random supply capacity. Journal of Industrial&Management Optimization, 2017, 13(2):80-80.
[9] Du S, Zhu Y, Nie T, et al. Loss-averse preferences in a two-echelon supply chain with yield risk and demand uncertainty. Operational Research, 2016,(5):1-28.
[10] Tversky A, Kahneman D. The framing of decisions and the psychology of choice. Science, 1981, 211(4481):453-458.
[11] Driesen B, Perea A, Peters H. On loss aversion in bimatrix games. Theory and Decision, 2010, 68(4):367-391.
[12] Driesen B, Perea A, Peters H. The Kalai-Smorodinsky bargaining solution with loss aversion. Mathematical Social Sciences, 2011, 61(1):58-64.
[13] Shalev J. Loss aversion and bargaining. Theory and Decision, 2002, 52(3):201-232.
[14] 冯中伟,谭春桥. 考虑损失厌恶行为与谈判破裂的Rubinstein谈判博弈研究. 运筹与管理, 2020, 29(4):70-77.(Feng Z, Tan C Q. Rubinstein bargaining with loss aversion and a risk of breakdown. Operation Research and Management Science, 2020, 29(4):70-77.)
[15] Hendon E, Jorgen H J, Sloth B. The one-shot-deviation principle for sequential rationality. Games and Economic Behavior, 1996, 12(2):274-282.
[1] 王志胜,周超,孙俊珍. 桥式吊车系统信息融合跟踪控制器设计[J]. 系统科学与数学, 2017, 37(3): 641-651.
[2] 孙红英,刘向荣,杨建梅,谢伟聪. 价格波动关联效应网络构建研究------以广东省为例[J]. 系统科学与数学, 2016, 36(11): 1945-1958.
[3] 张聚,胡标标,谢作樟,龚俊强. 显式模型预测控制的可达分区点定位算法[J]. 系统科学与数学, 2016, 36(10): 1585-1596.
[4] 张聚,余蓉. 快速在线模型预测及在三自由度直升机中的应用[J]. 系统科学与数学, 2016, 36(10): 1618-1629.
[5] 肖会敏,张锟,崔春生. 基于协同过滤的移动电子商务推荐算法[J]. 系统科学与数学, 2016, 36(8): 1265-1274.
[6] 刘维奇,李乐. 基于改进无迹卡尔曼滤波的波动率研究[J]. 系统科学与数学, 2016, 36(6): 884-892.
[7] 陈艳声,邹辉文.  金融危机与一般均衡下的CDO定价[J]. 系统科学与数学, 2016, 36(4): 528-550.
[8] 陶桂平,韩立岩,宋捷. 基于矩的概率分布差异度量[J]. 系统科学与数学, 2013, 33(9): 1071-1082.
[9] 鲁凯生,袁裕鹏. F(z)上系统能控性PBH判据[J]. 系统科学与数学, 2013, 33(6): 653-660.
[10] 张立先;孙瑞勇;李洪波;高小山. 数控插补中基于运动曲线的局部优化和基于前瞻控制的整体优化[J]. 系统科学与数学, 2010, 30(11): 1548-1561.
[11] 吴梦;马国庆;杨周旺;邓建松. 极小旋转标架定义的流形几何[J]. 系统科学与数学, 2010, 30(11): 1562-1573.
[12] 俞立平. 高技术产业技术积累:作用机制、绩效与问题[J]. 系统科学与数学, 2021, 41(12): 3500-3516.
阅读次数
全文


摘要