针对一类时变参数饱和离散时间系统,为了实现系统预见跟踪性能,文章提出了一种目标值信号预见补偿控制方法.首先,引入一个与状态变量有关的辅助变量,构造出包含目标值信号未来信息的扩大误差系统,将原系统的预见跟踪问题转化为扩大误差系统的H∞控制问题;然后,针对所推导的扩大误差系统,采用一种改进后的扇形条件处理饱和项,并提出一个带有预见作用的状态反馈.基于Lyapunov稳定性理论和线性矩阵不等式(LMI)技巧,给出闭环系统渐近稳定的充分条件及预见控制器的设计方法.通过求解LMI,确定预见控制器增益矩阵.数值仿真表明文章结果的有效性.
Abstract
For a class of uncertain discrete-time systems with time-varying polytopic and input saturation, a control method of reference preview compensation is proposed to achieve preview tracking performance in this paper. First, an auxiliary variable related to the state variable is introduced to constructed the augmented error system including previewed information. This leads to the preview control problem of the original system is transformed into the H∞ control problem of the augmented error system. Then, for the augmented error system, a sector condition handles saturation is proposed to deal with the input saturation and a state feedback with preview actions is presented. Based on Lyapunov method and LMI technique, the conditions of asymptotic stability of the closed-loop system and the design method of the preview controller are given. The preview controller's gain matrix is obtained by solving LMI. Finally, the effectiveness of the results in this paper is illustrated by numerical simulation examples.
关键词
扩大误差系统 /
预见控制 /
时变参数 /
不确定系统 /
输入饱和 /
线性矩阵不等式
{{custom_keyword}} /
Key words
Augmented error system /
preview control /
time-varying polytopic uncertainties /
uncertain system /
input saturation /
LMI
{{custom_keyword}} /
中图分类号:
93D15
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Sheridan T B.Three models of preview control.IEEE Transactions on Human Factors in Electronics, 1966, 7(2):91-102.
[2] Tomizuka M.Optimal continuous finite preview problem.IEEE Transactions on Automatic Control, 1975, 20(3):362-365.
[3] Tomizuka M, Whitney D E.Optimal discrete finite preview problems (why and how is future information important?).Journal of Dynamic Systems, Measurement, and Control, 1975, 97(4):319-325.
[4] Katayama T, Hirono T.Design of an optimal servomechanism with preview action and its dual problem.International Journal of Control, 1987, 45(2):407-420.
[5] Liao F C, Ren Z Q, Tomizuka M, et al.Preview control for impulse-free continuous-time descriptor systems.International Journal of Control, 2015, 88(6):1142-1149.
[6] Zhao L, Sun F Q, Ren J C, et al.Optimal preview control for a class of continuous time-invariant descriptor systems.Optimal Control Applications and Methods, 2016, 37(2):279-289.
[7] Lu Y R, Liao F C, Deng J M, et al.Cooperative optimal preview tracking for linear descriptor multi-agent systems.Journal of the Franklin Institute, 2019, 356(2):908-934.
[8] Zhao L, Sun F Q, Ren J C, et al.Optimal preview control for a class of continuous time-invariant descriptor systems.Optimal Control Applications and Methods, 2016, 37(2):279-289.
[9] 李琳,谭跃刚.基于目标预见时间的空间目标的轨迹跟踪控制.制造业自动化, 2010, 32(7):199-201.(Li L, Tan Y G.The space goal orbit tracking control based of goal preview time.Manufacturing Automation, 2010, 32(7):199-201.)
[10] Liao F C, Wnag J, Yang G H.Reliable robust preview tracking control against actuator faults.Asian Journal of Control, 2003, 5(1):124-131.
[11] Li L, Liao F C.Parameter-dependent preview control with robust tracking performance.IET Control Theory&Applications, 2017, 11(1):38-46.
[12] Li L, Liao F.Robust preview control for a class of uncertain discrete-time systems with timevarying delay.ISA Transactions, 2018, 73:11-21.
[13] Li L, Liao F C, Deng J M.H∞ preview control of a class of uncertain discrete-time systems.Asian Journal of Control, 2017, 19(4):1542-1556.
[14] Li L.Observer-based preview repetitive control for uncertain discrete-time systems.International Journal of Robust&Nonlinear Control, 2021, 31(4):1103-1121.
[15] Lan Y H, He J L, Li P, et al.Optimal preview repetitive control with application to permanent magnet synchronous motor drive system.Journal of the Franklin Institute, 2020, 357(15):10194-10210.
[16] Li L, Liao F C.Output feedback preview tracking control for discrete-time polytopic time-varying systems.International Journal of Control, 2019, 92(12):2979-2989.
[17] Han K Z, Feng J.Fault tolerant tracking control for a class of linear parameter varying systems using reduced-order simultaneous estimator and optimal preview policy.International Journal of Systems Science, 2020, 51(2):313-333.
[18] 杨浩,裴海龙.一类输入饱和非仿射非线性系统的模型预测控制.控制理论与应用, 2021, 38(4):425-432.(Yang H, Pei H L.Nonlinear dynamic inversion approach for a class of nonaffine nonlinear systems with input saturation.Control Theory&Applications, 2021, 38(4):425-432.)
[19] 周琪,陈广登,鲁仁全,等.基于干扰观测器的输入饱和多智能体系统事件触发控制.中国科学:信息科学, 2019, 49(11):1502-1516.(Zhou Q, Chen G D, Lu R Q, et al.Disturbance-observer-based event-triggered control for multiagent systems with input saturation.Scientia Sinica Informationis, 2019, 49(11):1502-1516.)
[20] 周章勇,邵书义,胡伟.输入饱和情形下战斗机大机动动态面控制.北京航空航天大学学报, 2021, 47(2):247-254.(Zhou Z Y, Shao S Y, Hu W.High-g maneuver dynamic surface control of fighter plane under input saturation.Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2):247-254.)
[21] 石厅.不确定输入饱和系统的鲁棒控制研究.博士论文.浙江大学,杭州, 2009.(Shi T.Study on robust control for uncertain systems with actuator saturation.Doctoral thesis.Zhejiang University, Hangzhou, 2009.)
[22] Nguyen A T, Chevrel P, Claveau F.Gain-scheduled static output feedback control for saturated LPV systems with bounded parameter variations.Automatica, 2018, 89:420-424.
[23] Ma Y C, Jia X R, Liu D Y.Finite-time dissipative control for singular discrete-time Markovian jump systems with actuator saturation and partly unknown transition rates.Applied Mathematical Modelling, 2018, 53:49-70.
[24] Cui Y F, Hu J, Wu Z H, et al.Finite-time sliding mode control for networked singular Markovian jump systems with packet losses:A delay-fractioning scheme.Neurocomputing, 2020, 385:48-62.
[25] Zhang J H, Lam J, Xia Y Q.Output feedback delay compensation control for networked control systems with random delays.Information Sciences, 2014, 265:154-166.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(61903130),甘肃省青年科技基金计划(21JR7RA246),山东省自然科学基金(ZR2020QA036),湖北经济学院科研培育项目(PYYB202007,PYZD202005)资助课题.
{{custom_fund}}