中图分类号:
34C07
92D25
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 黄博. 微分系统的极限环分岔与混沌行为的计算机辅助分析. 博士论文. 北京航空航天大学, 北京, 2021. (Huang B. Computer aided analysis of limit cycle bifurcation and chaotic behavior for differential and dynamical systems. Doctoral Dissertation. Beihang University, Beijing, 2021.)
[2] 胡亦郑, 罗勇, 陆征一. 多项式微分系统定性性质的算法化推导. 系统科学与数学, 2010, 30(11):1465-1477. (Hu Y Z, Luo Y, Lu Z Y. Mechanical manipulation for the qualitative properties of polynomial differential systems. Journal of Systems Science and Mathematical Sciences, 2010, 30(11):1465-1477.)
[3] Wang D M. Mechanical manipulation for a class of differential systems. Journal of Symbolic Computation, 1991, 12(2):233-254.
[4] Wang D M, Xia B C. Stability analysis of biological systems with real solution classification. Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation (Beijing, China), 2005, 354-361.
[5] She Z K, Xue B, Zheng Z M. Algebraic analysis on asymptotic stability of continuous dynamical systems. Proceedings of the 2011 International Symposium on Symbolic and Algebraic Computation (San Jose, USA), 2011, 313-320.
[6] Sun X B, Huang W T. Bounding the number of limit cycles for a polynomial Liénard system by using regular chains. Journal of Symbolic Computation, 2017, 79(2):197-210.
[7] Huang B, Niu W. Analysis of snapback repellers using methods of symbolic computation. International Journal of Bifurcation and Chaos, 2019, 29(4):1950054-1-13.
[8] Huang B, Yap C. An algorithmic approach to small limit cycles of nonlinear differential systems:The averaging method revisited. Journal of Symbolic Computation, 2021, https://doi.org/10.1016/j.jsc.2020.09.001.
[9] Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. 4nd Edition. New York:Springer, 1993.
[10] Han M A. Existence of periodic orbits and invariant tori in codimension two bifurcations of three dimensional systems. Journal of Systems Science and Mathematical Sciences, 1998, 18(4):403-409.
[11] Kuznetsov Y. Elements of Applied Bifurcation Theory. New York:Springer, 2004.
[12] Llibre J, Zhang X. Hopf bifurcation in higher dimensional differential systems via averaging method. Pacific Journal of Mathematics, 2009, 240(2):321-341.
[13] Baldomá I, Seara T M. The inner equation for generic analytic unfoldings of the Hopf-Zero singularity. Discrete and Continuous Dynamical Systems-Series B, 2008, 10(2/3):323-347.
[14] Champneys A R, Kirk V. The entwined wiggling of homoclinic curves emerging from saddlenode/Hopf instabilities. Physica D, 2004, 195(1/2):77-105.
[15] Han M A, Yu P. Normal Forms, Melnikov Functions, and Bifurcations of Limit Cycles. New York:Springer, 2012.
[16] Barreira L, Llibre J, Vall C. Limit cycles bifurcating from a Zero-Hopf singularity in arbitrary dimension. Nonlinear Dynamics, 2018, 92(3):1159-1166.
[17] Collins G E. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. Proceedings of the Second GI Conference on Automata Theory and Formal Languages, 1975, 134-183.
[18] Collins G E, Hong H. Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation, 1991, 12(3):299-328.
[19] Yang L, Xia B C. Real solution classifications of parametric semi-algebraic systems. Algorithmic Algebra and Logic-Proceedings of the A3L 2005(Passau, Germany), 2005, 281-289.
[20] Xia B C. DISCOVERER:A toll for solving semi-algebraic systems. ACM Communications in Computer Algebra, 2007, 41(3):102-103.
[21] Chen C B, Davenport J H, May J P, et al. Triangular decomposition of semi-algebraic systems. Journal of Symbolic Computation, 2013, 49(1):3-26.
[22] Lazard D, Rouillier F. Solving parametric polynomial systems. Journal of Symbolic Computation, 2007, 42(6):636-667.
[23] Moroz G, Rouillier F. DV-A Maple package for solving parametric polynomial systems. http://mmrc.iss.ac.cn/issac2005/software/dv.htm.
[24] Rössler O E. Continuous chaos-four prototype equations. Annals of the New York Academy of Sciences, 1979, 316(1):376-392.
[25] Llibre J. Periodic orbits in the Zero-Hopf bifurcation of the Rössler system. Romanian Astronomical Journal, 2014, 24(1):49-60.
[26] Zhou L L, Chen Z Q, Wang J Z, et al. Local bifurcation analysis and global dynamics estimation of a novel 4-dimensional hyperchaotic system. International Journal of Bifurcation and Chaos, 2017, 27(2):1750021-1-20.
[27] Llibre J, Mereu A C, Teixeira M A. Limit cycles of the generalized polynomial Liénard differential equations. Mathematical Proceedings of the Cambridge Philosophical Society, 2009, 148(2):363-383.
[28] Sanders J A, Verhulst F, Murdock J. Averaging Methods in Nonlinear Dynamical Systems. 2nd Edition. New York:Springer, 2007.
[29] Llibre J, Novaes D D, Teixeira M A. Higher order averaging theory for finding periodic solutions via Brouwer degree. Nonlinearity, 2014, 27(3):563-583.
[30] Buicǎ A, Llibre J. Averaging methods for finding periodic orbits via Brouwer degree. Bulletin Des Sciences Mathématiques, 2004, 128(1):7-22.
[31] Browder F E. Fixed point theory and nonlinear problems. Bulletin of the American Mathematical Society, 1983, 9(1):1-40.
[32] Marsden J E, McCracken M. The Hopf Bifurcation and Its Applications. New York:SpringerVerlag, 1976.
[33] Llibre J, Makhlouf A, Badi S. 3-dimensional Hopf bifurcation via averaging theory of second order. Discrete and Continuous Dynamical Systems, 2009, 25(4):1287-1295.
[34] Kassa S, Llibre J, Makhlouf A. N-dimensional Zero-Hopf bifurcation of polynomial differential systems via averaging theory of second order. Journal of Dynamical and Control Systems, 2021, 27(2):283-291.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(12101032,11625105,12131004)资助课题.
{{custom_fund}}