黄博, 韩德仁
黄博, 韩德仁. 高维多项式微分系统Zero-Hopf分岔分析及算法推导[J]. 系统科学与数学, 2021, 41(12): 3280-3298.
HUANG Bo, HAN Deren. Analysis of Zero-Hopf Bifurcation in High Dimensional Polynomial Differential Systems with Algorithm Derivation[J]. Journal of Systems Science and Mathematical Sciences, 2021, 41(12): 3280-3298.
HUANG Bo, HAN Deren
MR(2010)主题分类:
分享此文:
[1] 黄博. 微分系统的极限环分岔与混沌行为的计算机辅助分析. 博士论文. 北京航空航天大学, 北京, 2021. (Huang B. Computer aided analysis of limit cycle bifurcation and chaotic behavior for differential and dynamical systems. Doctoral Dissertation. Beihang University, Beijing, 2021.) [2] 胡亦郑, 罗勇, 陆征一. 多项式微分系统定性性质的算法化推导. 系统科学与数学, 2010, 30(11):1465-1477. (Hu Y Z, Luo Y, Lu Z Y. Mechanical manipulation for the qualitative properties of polynomial differential systems. Journal of Systems Science and Mathematical Sciences, 2010, 30(11):1465-1477.) [3] Wang D M. Mechanical manipulation for a class of differential systems. Journal of Symbolic Computation, 1991, 12(2):233-254. [4] Wang D M, Xia B C. Stability analysis of biological systems with real solution classification. Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation (Beijing, China), 2005, 354-361. [5] She Z K, Xue B, Zheng Z M. Algebraic analysis on asymptotic stability of continuous dynamical systems. Proceedings of the 2011 International Symposium on Symbolic and Algebraic Computation (San Jose, USA), 2011, 313-320. [6] Sun X B, Huang W T. Bounding the number of limit cycles for a polynomial Liénard system by using regular chains. Journal of Symbolic Computation, 2017, 79(2):197-210. [7] Huang B, Niu W. Analysis of snapback repellers using methods of symbolic computation. International Journal of Bifurcation and Chaos, 2019, 29(4):1950054-1-13. [8] Huang B, Yap C. An algorithmic approach to small limit cycles of nonlinear differential systems:The averaging method revisited. Journal of Symbolic Computation, 2021, https://doi.org/10.1016/j.jsc.2020.09.001. [9] Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. 4nd Edition. New York:Springer, 1993. [10] Han M A. Existence of periodic orbits and invariant tori in codimension two bifurcations of three dimensional systems. Journal of Systems Science and Mathematical Sciences, 1998, 18(4):403-409. [11] Kuznetsov Y. Elements of Applied Bifurcation Theory. New York:Springer, 2004. [12] Llibre J, Zhang X. Hopf bifurcation in higher dimensional differential systems via averaging method. Pacific Journal of Mathematics, 2009, 240(2):321-341. [13] Baldomá I, Seara T M. The inner equation for generic analytic unfoldings of the Hopf-Zero singularity. Discrete and Continuous Dynamical Systems-Series B, 2008, 10(2/3):323-347. [14] Champneys A R, Kirk V. The entwined wiggling of homoclinic curves emerging from saddlenode/Hopf instabilities. Physica D, 2004, 195(1/2):77-105. [15] Han M A, Yu P. Normal Forms, Melnikov Functions, and Bifurcations of Limit Cycles. New York:Springer, 2012. [16] Barreira L, Llibre J, Vall C. Limit cycles bifurcating from a Zero-Hopf singularity in arbitrary dimension. Nonlinear Dynamics, 2018, 92(3):1159-1166. [17] Collins G E. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. Proceedings of the Second GI Conference on Automata Theory and Formal Languages, 1975, 134-183. [18] Collins G E, Hong H. Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation, 1991, 12(3):299-328. [19] Yang L, Xia B C. Real solution classifications of parametric semi-algebraic systems. Algorithmic Algebra and Logic-Proceedings of the A3L 2005(Passau, Germany), 2005, 281-289. [20] Xia B C. DISCOVERER:A toll for solving semi-algebraic systems. ACM Communications in Computer Algebra, 2007, 41(3):102-103. [21] Chen C B, Davenport J H, May J P, et al. Triangular decomposition of semi-algebraic systems. Journal of Symbolic Computation, 2013, 49(1):3-26. [22] Lazard D, Rouillier F. Solving parametric polynomial systems. Journal of Symbolic Computation, 2007, 42(6):636-667. [23] Moroz G, Rouillier F. DV-A Maple package for solving parametric polynomial systems. http://mmrc.iss.ac.cn/issac2005/software/dv.htm. [24] Rössler O E. Continuous chaos-four prototype equations. Annals of the New York Academy of Sciences, 1979, 316(1):376-392. [25] Llibre J. Periodic orbits in the Zero-Hopf bifurcation of the Rössler system. Romanian Astronomical Journal, 2014, 24(1):49-60. [26] Zhou L L, Chen Z Q, Wang J Z, et al. Local bifurcation analysis and global dynamics estimation of a novel 4-dimensional hyperchaotic system. International Journal of Bifurcation and Chaos, 2017, 27(2):1750021-1-20. [27] Llibre J, Mereu A C, Teixeira M A. Limit cycles of the generalized polynomial Liénard differential equations. Mathematical Proceedings of the Cambridge Philosophical Society, 2009, 148(2):363-383. [28] Sanders J A, Verhulst F, Murdock J. Averaging Methods in Nonlinear Dynamical Systems. 2nd Edition. New York:Springer, 2007. [29] Llibre J, Novaes D D, Teixeira M A. Higher order averaging theory for finding periodic solutions via Brouwer degree. Nonlinearity, 2014, 27(3):563-583. [30] Buicǎ A, Llibre J. Averaging methods for finding periodic orbits via Brouwer degree. Bulletin Des Sciences Mathématiques, 2004, 128(1):7-22. [31] Browder F E. Fixed point theory and nonlinear problems. Bulletin of the American Mathematical Society, 1983, 9(1):1-40. [32] Marsden J E, McCracken M. The Hopf Bifurcation and Its Applications. New York:SpringerVerlag, 1976. [33] Llibre J, Makhlouf A, Badi S. 3-dimensional Hopf bifurcation via averaging theory of second order. Discrete and Continuous Dynamical Systems, 2009, 25(4):1287-1295. [34] Kassa S, Llibre J, Makhlouf A. N-dimensional Zero-Hopf bifurcation of polynomial differential systems via averaging theory of second order. Journal of Dynamical and Control Systems, 2021, 27(2):283-291. |
[1] | 鲁健, 曾振柄. 用符号计算证明Ramsey定理的一个机械化方法[J]. 系统科学与数学, 2021, 41(12): 3311-3323. |
[2] | 郭嘉宾,陈玉福. 四维线性微分系统下三角反射矩阵的存在与计算[J]. 系统科学与数学, 2017, 37(10): 2052-2069. |
[3] | 窦家维,马丽,赵莲. 具有脉冲扩散的近远海渔业系统的周期优化收获策略[J]. 系统科学与数学, 2016, 36(11): 1865-1875. |
[4] | 童小娇,刘成贵. 系统安全运行约束下的动态环境经济调度[J]. 系统科学与数学, 2016, 36(11): 1876-1886. |
[5] | 桑波. 不变代数曲线与一类三次系统的中心判定问题[J]. 系统科学与数学, 2015, 35(5): 611-616. |
[6] | 桑波,张兴秋. 具有抛物线解的一类三次系统的中心判定问题[J]. 系统科学与数学, 2013, 33(6): 732-739. |
[7] | 高丽,张全信,俞元洪. 具分布时滞和阻尼项的偶阶半线性中立型微分方程的振动性[J]. 系统科学与数学, 2013, 33(5): 568-578. |
[8] | 孙文兵,谢文平. 受控系统带积分项的最优控制问题的控制参数化方法[J]. 系统科学与数学, 2013, 33(10): 1189-1198. |
[9] | 白羽,俞元洪. 二阶线性矩阵微分系统振动的变分准则[J]. 系统科学与数学, 2012, 32(7): 847-851. |
[10] | 周秀君. 具有阻尼项的二阶自共轭矩阵微分系统的振动定理[J]. 系统科学与数学, 2012, 32(1): 90-103. |
[11] | 王立娟;刘炳文. 一类具状态依赖时滞的微分系统解的渐近行为[J]. 系统科学与数学, 2010, 30(3): 392-397. |
[12] | 胡亦郑;罗勇;陆征一. 多项式微分系统定性性质的算法化推导[J]. 系统科学与数学, 2010, 30(11): 1465-1477. |
[13] | 陈旻. 平移多项式的判别序列[J]. 系统科学与数学, 2010, 30(1): 107-113. |
[14] | 支丽红. 符号和数值混合计算[J]. 系统科学与数学, 2008, 28(8): 1040-1052. |
[15] | 邰治新 王兴成. 线性中立型单延迟系统李代数稳定性判据[J]. 系统科学与数学, 2008, 28(12): 1461-1467. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||