祝恒坤1, 张海丽2
祝恒坤, 张海丽. 基于逆概率加权和插补的Mallows模型平均方法[J]. 系统科学与数学, 2022, 42(4): 1032-1059.
ZHU Hengkun, ZHANG Haili. Mallows Model Averaging Based on Inverse Probability Weighting and Imputation[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(4): 1032-1059.
ZHU Hengkun1, ZHANG Haili2
[1] Akaike H. Information theory and an extension of the maximum likelihood principle. Selected papers of Hirotugu Akaike, Springer, 1998, 199-213. [2] Schwarz G. Estimating the dimension of a model. The Annals of Statistics, 1978, 6:461-468. [3] Mallows C L. Some comments on Cp. Technometrics, 1973, 15:661-675. [4] Hjort N L, Claeskens G. Frequentist model average estimators. Journal of the American Statistical Association, 2003, 98(464):879-899. [5] Fragoso T M, Bertoli W, Louzada, F. Bayesian model averaging:A systematic review and conceptual classification. International Statistical Review, 2018, 86(1):1-28. [6] Buckland S T, Burnham K P, Augustin N H. Model selection:An integral part of inference. Biometrics, 1997, 53:603-618. [7] Hansen B E. Least squares model averaging. Econometrica, 2007, 75(4):1175-1189. [8] Wan A, Zhang X, Zou G. Least squares model averaging by Mallows criterion. Journal of Econometrics, 2010, 156(2):277-283. [9] Liu Q, Okui R. Heteroskedasticity-robust CP model averaging. Available at SSRN 1932232, 2012. [10] Liao J, Zou G. Corrected Mallows criterion for model averaging. Computational Statistics and Data Analysis, 2020, 144:106902. [11] Gao Y, Zhang X, Wang S, et al. Frequentist model averaging for threshold models. Annals of the Institute of Statistical Mathematics, 2019, 71(2):275-306. [12] Zhu R, Wan A T, Zhang X, et al. A Mallows-type model averaging estimator for the varyingcoefficient partially linear model. Journal of the American Statistical Association, 2019, 114(526):882-892. [13] Zhang X, Liang H. Focused information criterion and model averaging for generalized additive partial linear models. The Annals of Statistics, 2011, 39(1):174-200. [14] Zhang X, Wan A T, Zhou S Z. Focused information criteria, model selection, and model averaging in a Tobit model with a nonzero threshold. Journal of Business and Economic Statistics, 2012, 30(1):132-142. [15] Xu G, Wang S, Huang J Z. Focused information criterion and model averaging based on weighted composite quantile regression. Scandinavian Journal of Statistics, 2014, 41(2):365-381. [16] Yang Y. Adaptive regression by mixing. Journal of the American Statistical Association, 2001, 96(454):574-588. [17] Yuan Z, Yang Y. Combining linear regression models:When and how?Journal of the American Statistical Association, 2005, 100(472):1202-1214. [18] Liang H, Zou G, Wan A T, et al. Optimal weight choice for frequentist model average estimators. Journal of the American Statistical Association, 2011, 106(495):1053-1066. [19] Hansen B E, Racine J S. Jackknife model averaging. Journal of Econometrics, 2012, 167(1):8-46. [20] Zhang X, Wan A T, Zou G. Model averaging by jackknife criterion in models with dependent data. Journal of Econometrics, 2013, 174(2):82-94. [21] Gao Y, Zhang X, Wang S, et al. Model averagin g based on leave-subject-out cross-validation. Journal of Econometrics, 2016, 192(1):139-151. 4 j H G e:?$k v*A, Mallows a 2~1051 [22] Zhang H, Zou G. Cross-validation model averaging for generalized functional linear model. Econometrics, 2020, 8(1):7. [23] Little R J, Rubin D B. Statistical Analysis with Missing Data. John Wiley and Sons, 2019. [24] Dardanoni V, Salvatore M, Franco P. Regression with imputed covariates:A generalized missingindicator approach. Journal of Econometrics, 2011, 162(2):362-368. [25] Seaman S R, White I R. Review of inverse probability weighting for dealing with missing data. Statistical Methods in Medical Research, 2013, 22(3):278-295. [26] Dempster A P. Maximum likelihood from incomplete data via the EM algorithm. Dempster, A P., 1977, 39(1):1-22. [27] Consentino C F. Variable selection with incomplete covariate data. Biometrics, 2008, 64(4):1062-1069. [28] Jiang J, Nguyen T, Rao J S. The E-MS algorithm:Model selection with incomplete data. Journal of the American Statistical Association, 2015, 110(511):1136-1147. [29] Cavanaugh J E, Shumway R H. An Akaike information criterion for model selection in the presence of incomplete data. Statistical Research, 1998, 67(1):45-65. [30] Hens N, Aerts M, Molenberghs G. Model selection for incomplete and design-based samples. Statistics in Medicine, 2006, 25(14):2502-2520. [31] Zhang X. Model averaging with covariates that are missing completely at random. Economics Letters, 2013, 121(3):360-363. [32] Schomaker M, Wan A T, Heumann C. Frequentist model averaging with missing observations. Computational Statistics and Data Analysis, 2010, 54(12):3336-3347. [33] Dardanoni V, Luca G D, Modica S, et al. Model averaging estimation of generalized linear models with imputed covariates. Journal of Econometrics, 2015, 184(2):452-463. [34] Su, Z, Su Z, Ma J. Focused vector information criterion model selection and model averaging regression with missing response. Metrika, 2014, 77(3):415-432. [35] Schomaker M, Heumann C. Model selection and model averaging after multiple imputation. Computational Statistics and Data Analysis, 2014, 71:758-770. [36] Fang F, Lan W, Tong J, et al. Model averaging for prediction with fragmentary data. Journal of Business and Economic Statistics, 2019, 37(3):517-527. [37] Tai L, Wang C, Tian M. Inverse probability multiple weighted quantile regression estimation and its application with missing data. Statistical Research, 2018, 35(9):115-128. [38] Seaman S R, White I R, Copas A J, et al. Combining multiple imputation and inverse-probability weighting. Biometrics, 2012, 68(1):129-137. [39] Zhang X, Yu D, Zou G, et al. Optimal model averaging estimation for generalized linear models and generalized linear mixed-effects models. Journal of the American Statistical Association, 2015, 111(516):1-43. [40] Zou H, Zhang H H. On the adaptive elastic-net with a diverging number of parameters. Annals of Statistics, 2009, 37(4):1733-1751. [41] Tutz G, Ramzan S. Improved methods for the imputation of missing data by nearest neighbor methods. Computational Statistics and Data Analysis, 2015, 90:84-99. [42] Faisal S, Tutz G. Missing value imputation for gene expression data by tailored nearest neighbors. Statal Applications in Genetics and Molecular Biology, 2017, 16(2):95-106. [43] King G, Honaker J, O'Connell A J, et al. Analyzing incomplete political science data:An alternative algorithm for multiple imputation. American Political Science Association, 2001, 95(1):49-69. [44] Shao J. Mathematical Statistics, Second Edition. New York:Springer-Verlag, 2003. [45] Nelson B L, Wan A T, Zou G, et al. Reducing simulation input-model risk via input model averaging. INFORMS Journal on Computing, 2021, 33(2):672-684. |
[1] | 张小圆, 邓昌瑞, 黄艳梅, 鲍玉昆. 基于Jackknife模型平均的社会用电量预测研究[J]. 系统科学与数学, 2022, 42(3): 588-598. |
[2] | 宗先鹏, 王彤彤. 大规模数据下子抽样模型平均估计理论[J]. 系统科学与数学, 2022, 42(1): 109-132. |
[3] | 范国良, 饶诗文, 王江峰. 缺失数据下变系数部分非线性测量误差模型的经验似然估计[J]. 系统科学与数学, 2021, 41(9): 2643-2659. |
[4] | 廖军, 文丽, 尹建鑫. 高阶空间自回归模型的选择与平均估计[J]. 系统科学与数学, 2021, 41(5): 1400-1417. |
[5] | 乔鸽, 周建红, 李新民. 广义线性模型下模型平均的比较研究[J]. 系统科学与数学, 2021, 41(4): 1164-1180. |
[6] | 陈心杰,赵志豪. 高维纵向数据的模型平均估计[J]. 系统科学与数学, 2020, 40(7): 1297-1324. |
[7] | 高研,周建红,王海涛,张焕焕. 基于Jackknife模型平均方法的中国港口集装箱吞吐量预测[J]. 系统科学与数学, 2020, 40(4): 729-737. |
[8] | 王苗苗. 基于线性模型平均估计的置信区间[J]. 系统科学与数学, 2020, 40(10): 1866-1881. |
[9] | 孙瑞勇,张立先,李洪波. 基于目标函数的小线段转接点处的运动规划[J]. 系统科学与数学, 2019, 39(8): 1314-1321. |
[10] | 朱容,邹国华,张新雨. 部分函数线性模型的模型平均方法[J]. 系统科学与数学, 2018, 38(7): 777-800. |
[11] | 王维维,张齐,李新民. 广义矩估计模型平均[J]. 系统科学与数学, 2018, 38(7): 801-812. |
[12] | 陈全润,杨翠红. 河南省粮食产量预测方法研究[J]. 系统科学与数学, 2018, 38(7): 813-822. |
[13] | 文丽,卢灿昭. 基于区域房价的空间自回归模型平均[J]. 系统科学与数学, 2018, 38(7): 830-840. |
[14] | 喻达磊,饶炜东,尹潇潇. 岭回归中基于广义交叉核实法的最优模型平均估计[J]. 系统科学与数学, 2018, 38(6): 652-661. |
[15] | 孙志猛,马倩雯,李潇宁. 网络结构数据空间回归模型的平均估计[J]. 系统科学与数学, 2018, 38(6): 662-678. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||