• • 上一篇    

考虑动态双参考点的多用户网络均衡与演化

江晓岚, 田丽君   

  1. 福州大学经济与管理学院, 福州 350116
  • 收稿日期:2021-01-08 修回日期:2022-06-15 发布日期:2022-12-13
  • 基金资助:
    福建省自然科学基金重点项目(2022J02014)资助课题.

江晓岚, 田丽君. 考虑动态双参考点的多用户网络均衡与演化[J]. 系统科学与数学, 2022, 42(11): 2928-2941.

Jiang Xiaolan, Tian Lijun. Multi-User Network Equilibrium and Evolution Based on Two Dynamic Reference Points[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(11): 2928-2941.

Multi-User Network Equilibrium and Evolution Based on Two Dynamic Reference Points

Jiang Xiaolan, Tian Lijun   

  1. School of Economic and Management, Fuzhou University, Fuzhou 350116
  • Received:2021-01-08 Revised:2022-06-15 Published:2022-12-13
在不确定的交通网络中,出行个体的风险态度和参考依赖行为对日常路径选择结果具有 显著影响.文章以累积前景理论为框架, 引入基于试错法的动态拥挤收费,将时间和费用作 为两个维度分开考虑,假设日常时间参考点与出行者的风险态度和感知出行时间相关, 费用参考点与出行个体的时间价值和可节省的出行时间相关,均随着每日感知出行时间变化而动 态调整,在此基础上提出了考虑时间和费用双参考点的动态网络均衡模型.算例结果表明:路径流量与拥挤收费在经过一段时间的演化后均会达到均衡状态,实施动态拥挤收费可将路 段流量控制在一定范围之内, 降低平均出行时间.此外, 时间价值较低的用户偏向于选择平均出行时间较长但收费水平较低的路径,而时间价值较高的用户倾向于选择平均出行时间较 短而费用较高的路径,且这一趋势会随着损失或获得敏感度或时间费用前景值权重的增加而愈发明显.
In uncertain traffic network, commuters' risk attitude and reference-dependent behaviors play an important role in the day-to-day route choice process. Under the framework of cumulative prospect theory, this paper introduces a trial-and-error dynamic congestion pricing scheme, and separates the time and toll into two dimensions. It further assumes that the individuals' daily time reference points are related to their risk attitude and perceived travel time, and the daily toll reference points are dependent on their value of time and saved travel time, and all of them dynamically varies with the day-to-day perceived travel time. With this setting, a dynamic user equilibrium model is proposed with consideration of two reference points, i.e., time reference point and toll reference point. The results indicate that the path flows and congestion tolls all could reach to the equilibrium state after a period of evolution, and the congestion tolls can help to control the link flow in a certain range and thus reduce the commuters' average travel time. Furthermore, it finds that the users with lower value of time are inclined to choose the routes with lower toll and higher travel time, and the users with higher value of time prefer to the routes with higher toll and lower travel time, and this trend is more obvious for a higher gain or loss sensitivity or prospect value weight with respect to time and cost.

MR(2010)主题分类: 

()
[1] Kahneman D A, Tversky A N. Prospect theory: An analysis of decision under risk. Econometrica, 1979, 47(2): 263-291.
[2] Tversky A, Kahneman D. Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk & Uncertainty, 1992, 5(4): 297-323.
[3] Avineri E. The effect of reference point on stochastic network equilibrium. Transportation Science, 2006, 40(4): 409-420.
[4] 田丽君, 黄海军, 许岩. 具有异质参考点的多用户网络均衡模型. 管理科学学报, 2014, 17(7): 1-9. (Tian L J, Huang H J, Xu Y. Modeling the multi-class network equilibrium for travelers with heterogeneous reference points. Journal of Management Sciences in China, 2014, 17(7): 1-9.)
[5] Yang J F, Jiang G Y. Development of an enhanced route choice model based on cumulative prospect theory. Transportation Research Part C: Emerging Technologies, 2014, 47(2): 168-178.
[6] 田丽君, 吕成锐, 黄海军.基于出行时间区间数和参考点的择路行为 研究. 系统科学与数学, 2018, 38(4): 395-405. (Tian L J, Lü C R, Huang H J. Study on the route choice behaviors based on interval travel time and reference points. Journal of Systems Science and Mathematical Sciences, 2018, 38(4): 395-405.)
[7] 宗刚, 曾庆华, 魏素豪.基于时间价值的交通出行方式选择行为研究. 管理 工程学报, 2020, 34(3): 142-150. (Zong G, Zeng Q H, Wei S H. Research on traffic mode choice behavior based on commuting ravel time value. Journal of Industrial Engineering and Engineering Management, 2020, 33(3): 142-150.)
[8] 王伟, 孙会君. 基于参考依赖理论的瓶颈道路收费模型. 交通运输系 统工程与信息, 2014, 14(1): 180-186. (Wang W, Sun H J. Pricing models in a highway with bottleneck based on reference-dependent theory. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(1): 180-186.)
[9] Chen Y F, Zheng N, Vu H L. A novel urban congestion pricing scheme considering travel cost perception and level of service. Transportation Research Part C: Emerging Technologies, 2021, (125): 103042.
[10] Kaddoura I, Nagel K. Congestion pricing in a real-world oriented agent-based simulation context. Research in Transportation Economics, 2019, 5(74): 40-51.
[11] Yang H, Huang H J. The multi-class, multi-criteria traffic network equilibrium and system optimum problem. Transportation Research Part B: Methodological, 2014, 38(1): 1-15.
[12] Xu H, Lou Y, Yin Y, et al. A prospect-based user equilibrium model with endogenous reference points and its application in congestion pricing. Transportation Research Part B: Methodological, 2011, 45(32): 311-328.
[13] Gao K, Sun L, Yang Y, et al. Cumulative prospect theory coupled with multi-attribute decision making for modeling travel behavior. Transportation Research Part A: Policy and Practice, 2021, 148(7): 1-21.
[14] Yang H, Xu W, He B S, et al. Road pricing for congestion control with unknown demand and cost functions. Transportation Research Part C: Emerging Technologies, 2021, 18(2): 157-175.
[15] Guo R Y, Yang H, Huang H J, et al. Day-to-Day flow dynamics and congestion control. Transportation Science, 2016, 50(3): 982-997.
[16] Horowitz J L. The stability of stochastic equilibrium in a two-link transportation network. Transportation Research Part B: Methodological, 1984, 18(1): 13-28.
[17] Connors R D, Sumalee A. A network equilibrium model with travellers' perception of stochastic travel times. Transportation Research Part B: Methodological, 2009, 43(6): 614-624.
[18] 徐红利, 于新莲, 周晶. 诱导信息下考虑路段容量退化的流量演化研究. 管理 科学学报, 2015, 18(7): 39-47. (Xu H L, Yu X L, Zhou J. Day-to-day travel choice dynamics with guidance information in degradable transport network. Journal of Management Sciences in China, 2015, 18(7): 39-47.
[1] 谭春桥, 冯中伟, 胡礼梅. 具有损失厌恶偏好的Muthoo交替出价谈判博弈研究[J]. 系统科学与数学, 2022, 42(4): 832-853.
[2] 史依颖, 杨翠红. 基于非对称供给使用表的部门异质性分析——Large以中国生产能耗异质性为例[J]. 系统科学与数学, 2022, 42(3): 568-587.
[3] 柴建, 赵逸杰, 梁婷, 魏照昊. 中国非居民用户用气量的行业异质性动态分析及预测——基于一种新的综合集成分析预测模型框架[J]. 系统科学与数学, 2022, 42(2): 318-336.
[4] 梁晋雯,田茂再. 异质性数据下基于  Maximin效应的充分降维方法[J]. 系统科学与数学, 2020, 40(5): 902-916.
[5] 王芝皓,田茂再,侯震梅. 基于偏最小二乘路径模型的分位效应测度[J]. 系统科学与数学, 2020, 40(4): 738-750.
[6] 王旭,王应明,温槟檐. 技术异质性视角下中国工业能源环境效率时空演化及其驱动机制研究[J]. 系统科学与数学, 2020, 40(12): 2297-2319.
[7] 苏鹏,田茂再. 基于最小化复合分位损失函数的尺度参数估计和异质性检验[J]. 系统科学与数学, 2018, 38(9): 1055-1066.
[8] 田丽君,吕成锐,黄海军. 基于出行时间区间数和参考点的择路行为研究[J]. 系统科学与数学, 2018, 38(4): 395-405.
[9] 李旭军,刘业政,荆科,何军. 节点的时间异质性对信息传播的影响[J]. 系统科学与数学, 2016, 36(10): 1630-1642.
[10] 乐琦. 基于累积前景理论的具有不确定偏好序信息的双边匹配决策方法[J]. 系统科学与数学, 2013, 33(9): 1061-1070.
[11] 周晶. 随机交通均衡配流模型及其等价的变分不等式问题[J]. 系统科学与数学, 2003, 23(1): 121-127.
阅读次数
全文


摘要