• • 上一篇    

有向相互依存网络的事件驱动异质一致性

陈佳博1,2, 涂俐兰1,2, 杨永1,2, 张青1,2   

  1. 1. 武汉科技大学冶金工业过程系统科学湖北省重点实验室, 武汉 430065;
    2. 武汉科技大学理学院, 武汉 430065
  • 收稿日期:2020-07-20 修回日期:2022-03-01 发布日期:2022-12-13
  • 通讯作者: 涂俐兰, Email: tulilan@wust.edu.cn
  • 作者简介:陈佳博(1996-), 男, 硕士研究生.Tel: 18986264730. E-mail: chenjiabo@wust.edu.cn
  • 基金资助:
    国家自然科学基金 (72031009), 冶金工业过程系统科学湖北省 重点实验室开放基金(Z201902)资助课题.

陈佳博, 涂俐兰, 杨永, 张青. 有向相互依存网络的事件驱动异质一致性[J]. 系统科学与数学, 2022, 42(11): 2886-2901.

CHEN Jiabo, TU Lilan, YANG Yong, ZHANG Qing. Event-Triggered Heterogeneous Consensus of Directed Interdependent Networks[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(11): 2886-2901.

Event-Triggered Heterogeneous Consensus of Directed Interdependent Networks

CHEN Jiabo1,2, TU Lilan1,2, YANG Yong1,2, ZHANG Qing1,2   

  1. 1. Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430065;
    2. College of Science, Wuhan University of Science and Technology, Wuhan
  • Received:2020-07-20 Revised:2022-03-01 Published:2022-12-13
基于事件驱动控制技术,文章研究了有向相互依存网络的异质一致性 问题.文章分别考虑了两种由两个子网络构成的网络:一是子网内部节点间无耦合关系;二是子网内部节点间有耦合关系.根据Lyapunov稳定性理论, 文章设计了一种事件驱动控制协议, 设定了事件驱动阈值,减少了控制器更新次数,实现了两种有向相互依存网络渐近异质一致于子网络的孤立节点系统的平衡点,并且还分析了网络的事件驱动控制过程中不存在Zeno现象.数值模拟表明:1)文章提出的控制方案能快速让网络的各个节点和平衡点达到渐近一致;2)子网内部的耦合关系能提高网络的控制效果,更能节约控制时间和控制能量.
Based on event-triggered control technology, in this paper, the heterogeneous consensus of directed interdependent networks is investigated. Furthermore, two types of networks consisting of two subnets are considered. One is that there is no intra-coupling relationship between any two nodes in the subnets, and the other is that there are coupling relationships between any two nodes in the subnets. According to Lyapunov stability theory, an event-triggered control protocol is designed in this paper, as well as the event-triggered threshold, which will decrease the updating number of the controllers and guarantee the asymptotic heterogeneous consensus between the two directed interdependent networks and the equilibrium points of the isolated node systems of the two subnets. Furthermore, we analyze that there is no Zeno phenomenon during the network event-driven control process. Numerical simulations show that: 1) The control scheme proposed in this paper can quickly make the nodes of the network and the equilibrium points of the isolated node systems consistent; 2) The coupling relationships in the subnets can improve the control effect of the network and save the control time and the control energy.

MR(2010)主题分类: 

()
[1] Agostino G D, Scala A. Networks of Networks: The Last Frontier of Complexity. Switzerland: Springer, 2014.
[2] Rinaldi S, Peerenboom J, Kelly T. Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Systems, 2001, 21(6): 11-25.
[3] Zimmerman R. Decision-making and the vulnerability of interdependent critical infrastructure. IEEE International Conference on Systems, 2005, 5: 4059-4063.
[4] Rosato V, Issacharoff L, Meloni S, et al. Modelling interdependent infrastructures using interacting dynamical models. International Journal of Critical Infrastructures, 2008, 4(1/2): 63-79.
[5] Reed D A, Kapur K C, Christie R D. Methodology for assessing the resilience of networked infrastructure. IEEE Systems Journal, 2009, 3(2): 174-180.
[6] Vespignani A. The fragility of interdependency. Nature, 2010, 464(7291): 984-985.
[7] Havlin S, Stanley, Bashan A, et al. Percolation of interdependent network of networks. Chaos Solitons & Fractals, 2015, 72: 4-19.
[8] Chen H S, Zhao X Y, Liu F, et al. Optimizing interconnections to maximize the spectral radius of interdependent networks. Physical Review E, 2017, 95: 032308.
[9] Yang Y, Tu L L, Li K Y, et al. Optimized inter-structure for enhancing the synchronizability of interdependent networks. Physica A Statistical Mechanics and Its Applications, 2019, 521: 310-318.
[10] Wu Z P, Guan Z H. Time-delay robustness of consensus problems in regular and complex networks. International Journal of Modern Physics C, 2007, 18(8): 1339-1350.
[11] Li Z K, Duan Z S, Chen G R, et al. Consensus of multi-agent systems and synchronization of complex networks: A unified viewpoint. IEEE Transactions on Circuits and Systems I-Regular Papers, 2010, 57(1): 213-224.
[12] Liu B, Hill D J. Impulsive consensus for complex dynamical networks with non-identical nodes and coupling time-delays. SIAM Journal on Control and Optimization, 2011, 49(2): 315-338.
[13] Yang S J, Li C D, Huang T W, et al. Fixed-time consensus of complex dynamical networks with nonlinear coupling and fuzzy state-dependent uncertainties. Fuzzy Sets and Systems, 2019, 365: 81-97.
[14] 王宇娟, 涂俐兰, 宋帅.耦合含时滞的相互依存网络的局部 自适应异质同步.物理学报, 2018, 67(5): 60-70. (Wang Y J, Tu L L, Song S, et al. Local adaptive heterogeneous synchronization for interdependent networks with delayed coupling. Acta Physica Sinica, 2017, 67(5): 60-70.)
[15] 郭天姣, 涂俐兰.噪音下相互依存网络的自适应H无穷异质同步.自 动化学报, 2020, 46(6): 1229-1239. (Guo T J, Tu L L. Adaptive H$_\infty$ heterogeneous synchronization for interdependent networks with noise. Acta Automatica Sinica, 2020, 46(6): 1229-1239.)
[16] 陈洁怡, 涂俐兰, 余东.基于同步的有向相互依存网络骨干结构识别.数 学杂志, 2020, 40(1): 70-80. (Chen J Y, Tu L L, Yu D. Synchronization-based backbone structure identification for directed interdependent networks. Journal of Mathematical, 2020, 40(1): 70-80.)
[17] Chen B, Liu X P, Liu K F. Direct adaptive fuzzy control of nonlinear strict-feedback systems. Automatica, 2009, 45(6): 1530-1535.
[18] Wang Z Y, Huang L H, Zuo Y, et al. H-infinity control for uncertain system with time-delay and nonlinear external disturbance via adaptive control method. International Journal of Control Automation and Systems, 2010, 8(2): 266-271.
[19] Reza B, Badamchizadeh M, Ghiasi A R. An adaptive method to parameter identification and synchronization of fractional-order chaotic systems with parameter uncertainty. Applied Mathematical Modelling, 2016, 40(7): 4468-4479.
[20] Solis C U, Clempner J B, Poznyak A S. Fast terminal sliding-mode control with an integral filter applied to a van der pol oscillator. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5622-5628.
[21] Zhou Y F, Zhang H, Zeng Z G. Quasi-synchronization of delayed memristive neuralnetworks via a hybrid impulsive control. IEEE Transactions on Systems Man Cybernetics-Systems, 2021, 51(3): 1954-1965.
[22] Ramadge P, Wonham W. The control of discrete event system. Proceedings of the IEEE, 1989, 77(1): 81-98.
[23] Heemels W P, Johansson K H, Tabuada P. An introduction to event-triggered and self-triggered control. IEEE 51st Annual Conference on Decision and Control, 2012, 51: 3270-3285.
[24] 王航飞, 禹梅, 谢广明, 等. 基于事件驱动的环形编队多智能体系统. 系 统科学与数学, 2014, 34(7): 815-827. (Wang H F, Yu M, Xie G M, et al. Event-driven circle formation control for multi-agent systems. Journal of Systems Science and Mathematical Sciences, 2014, 34(7): 815-827.)
[25] Heemels W P M H, Sandee J H, Bosch V D. Analysis of event-driven controllers for linear systems. International Journal of Control, 2008, 81(4): 571-590.
[26] Wang X, Lemmon M D. Self-triggered feedback control systems with finite-gain L2 stability. IEEE Transactions on Automatic Control, 2009, 54(3): 452-467.
[27] Dimarogonas D V, Frazzoli E, Johansson K H. Distributed event-triggered control for multi-agent systems. IEEE Transactions on Automatic Control, 2012, 57(5): 1291-1297.
[28] Tallaaprogada P, Chopra N. On event triggered tracking for nonlinear systems. IEEE Transactions on Automatic Control, 2013, 58(9): 2343-2348.
[29] Adaldo A, Alderisio F, Liuzza D, et al. Event-triggered pinning control of complex networks with switching topologies. IEEE Annual Conference on Decision and Control, 2014, 2783-2788.
[30] Li H Q, Liao X F, Chen G, et al. Event-triggered asynchronous intermittent communication strategy for synchronization in complex dynamical networks. Neural Networks, 2015, 66: 1-10.
[31] Sivaranjani K, Rakkiyappan R, Cao J D, et al. Synchronization of nonlinear singularly perturbed complex networks with uncertain inner coupling via event triggered control. Applied Mathematics and Computation, 2017, 311: 283-299.
[32] Dai H, Chen W S, Jia J P, et al. Exponential synchronization of complex dynamical networks with time-varying inner coupling via event-triggered communication. Neurocomputing, 2017, 245: 124-132.
[33] Shi C X, Yang G H, Li X J. Event-triggered output feedback synchronization control of complex dynamical networks. Neurocomputing, 2018, 275: 29-39.
[34] Sivaranjani K, Rakkiyappan R, Joo Y H. Event triggered reliable synchronization of semi-Markovian jumping complex dynamical networks via generalized integral inequalities. Journal of the Franklin Institute-Engineering and Applied Mathematics, 2018, 355(8): 3691-3716.
[35] Dai M C, Xia J W, Xia H, et al. Event-triggered passive synchronization for Markov jump neural networks subject to randomly occurring gain variations. Neurocomputing, 2019, 331: 403-411.
[36] Lu W L, Li X, Rong Z H. Global stabilization of complex networks with digraph topologies via a local pinning algorithm. Automatica, 2010, 46: 116-121.
[37] Fan Y, Feng G. Distributed event-triggered control of multi-agent systems with combinational measurements. Automatica, 2013, 49: 671-675.
[1] 何志强, 陈凤娥, 彭幸春. 均值-方差准则下保险公司带内幕信息的时间一致投资-再保险策略[J]. 系统科学与数学, 2022, 42(9): 2432-2447.
[2] 刘教, 王鑫, 李红超. 持续DoS攻击下多智能体系统基于观测器的一致性研究[J]. 系统科学与数学, 2022, 42(7): 1715-1726.
[3] 邓娅, 朱伟. 具有分布式无限通信时延的多智能体系统的领导者-跟随者一致性研究:M-矩阵方法[J]. 系统科学与数学, 2022, 42(6): 1467-1477.
[4] 龚平, 汪坤. 异质非线性分数阶多智能体系统的预设时间二部一致性跟踪[J]. 系统科学与数学, 2022, 42(11): 2874-2885.
[5] 刘瑛, 魏海燕, 魏翠萍. 一致性和特征向量驱动的个性化语义及其在稻米评价中的应用[J]. 系统科学与数学, 2022, 42(10): 2680-2697.
[6] 于俊燕, 贾荣波, 禹梅. 三阶多智能体系统的尺度群一致性[J]. 系统科学与数学, 2021, 41(7): 1761-1771.
[7] 杨鹏,杨志江. 相对表现视角下的再保险与投资策略[J]. 系统科学与数学, 2021, 41(2): 517-532.
[8] 晋守博,李耀红,魏章志.  基于大通讯时滞的多智能体系统的控制协议研究[J]. 系统科学与数学, 2020, 40(9): 1531-1538.
[9] 梁薇,王应明. 考虑群体一致性的区间犹豫模糊TOPSIS决策方法[J]. 系统科学与数学, 2020, 40(7): 1146-1156.
[10] 冯攀,吴笛,朱文武,都海波. 输入饱和受限的多个四旋翼飞行器分布式编队控制[J]. 系统科学与数学, 2020, 40(1): 1-14.
[11] 岳昊晟,余胜春,涂俐兰. 基于协整的股票相互依存网络构建及分析[J]. 系统科学与数学, 2019, 39(5): 790-803.
[12] 王博,田玉平. 不确定信息下的一致性问题综述[J]. 系统科学与数学, 2019, 39(2): 203-218.
[13] 张晓丹,刘开恩,纪志坚. 具有时变时滞多智能体系统二分一致性[J]. 系统科学与数学, 2018, 38(8): 841-851.
[14] 蒋衍光,黄一,薛文超,方海涛. 拟一致无迹卡尔曼滤波算法[J]. 系统科学与数学, 2017, 37(4): 965-977.
[15] 何英高,王翔宇. 基于二部图的多智能体系统加权分组一致性[J]. 系统科学与数学, 2017, 37(4): 1010-1020.
阅读次数
全文


摘要