• • 上一篇
陈佳博1,2, 涂俐兰1,2, 杨永1,2, 张青1,2
陈佳博, 涂俐兰, 杨永, 张青. 有向相互依存网络的事件驱动异质一致性[J]. 系统科学与数学, 2022, 42(11): 2886-2901.
CHEN Jiabo, TU Lilan, YANG Yong, ZHANG Qing. Event-Triggered Heterogeneous Consensus of Directed Interdependent Networks[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(11): 2886-2901.
CHEN Jiabo1,2, TU Lilan1,2, YANG Yong1,2, ZHANG Qing1,2
MR(2010)主题分类:
分享此文:
[1] Agostino G D, Scala A. Networks of Networks: The Last Frontier of Complexity. Switzerland: Springer, 2014. [2] Rinaldi S, Peerenboom J, Kelly T. Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Systems, 2001, 21(6): 11-25. [3] Zimmerman R. Decision-making and the vulnerability of interdependent critical infrastructure. IEEE International Conference on Systems, 2005, 5: 4059-4063. [4] Rosato V, Issacharoff L, Meloni S, et al. Modelling interdependent infrastructures using interacting dynamical models. International Journal of Critical Infrastructures, 2008, 4(1/2): 63-79. [5] Reed D A, Kapur K C, Christie R D. Methodology for assessing the resilience of networked infrastructure. IEEE Systems Journal, 2009, 3(2): 174-180. [6] Vespignani A. The fragility of interdependency. Nature, 2010, 464(7291): 984-985. [7] Havlin S, Stanley, Bashan A, et al. Percolation of interdependent network of networks. Chaos Solitons & Fractals, 2015, 72: 4-19. [8] Chen H S, Zhao X Y, Liu F, et al. Optimizing interconnections to maximize the spectral radius of interdependent networks. Physical Review E, 2017, 95: 032308. [9] Yang Y, Tu L L, Li K Y, et al. Optimized inter-structure for enhancing the synchronizability of interdependent networks. Physica A Statistical Mechanics and Its Applications, 2019, 521: 310-318. [10] Wu Z P, Guan Z H. Time-delay robustness of consensus problems in regular and complex networks. International Journal of Modern Physics C, 2007, 18(8): 1339-1350. [11] Li Z K, Duan Z S, Chen G R, et al. Consensus of multi-agent systems and synchronization of complex networks: A unified viewpoint. IEEE Transactions on Circuits and Systems I-Regular Papers, 2010, 57(1): 213-224. [12] Liu B, Hill D J. Impulsive consensus for complex dynamical networks with non-identical nodes and coupling time-delays. SIAM Journal on Control and Optimization, 2011, 49(2): 315-338. [13] Yang S J, Li C D, Huang T W, et al. Fixed-time consensus of complex dynamical networks with nonlinear coupling and fuzzy state-dependent uncertainties. Fuzzy Sets and Systems, 2019, 365: 81-97. [14] 王宇娟, 涂俐兰, 宋帅.耦合含时滞的相互依存网络的局部 自适应异质同步.物理学报, 2018, 67(5): 60-70. (Wang Y J, Tu L L, Song S, et al. Local adaptive heterogeneous synchronization for interdependent networks with delayed coupling. Acta Physica Sinica, 2017, 67(5): 60-70.) [15] 郭天姣, 涂俐兰.噪音下相互依存网络的自适应H无穷异质同步.自 动化学报, 2020, 46(6): 1229-1239. (Guo T J, Tu L L. Adaptive H$_\infty$ heterogeneous synchronization for interdependent networks with noise. Acta Automatica Sinica, 2020, 46(6): 1229-1239.) [16] 陈洁怡, 涂俐兰, 余东.基于同步的有向相互依存网络骨干结构识别.数 学杂志, 2020, 40(1): 70-80. (Chen J Y, Tu L L, Yu D. Synchronization-based backbone structure identification for directed interdependent networks. Journal of Mathematical, 2020, 40(1): 70-80.) [17] Chen B, Liu X P, Liu K F. Direct adaptive fuzzy control of nonlinear strict-feedback systems. Automatica, 2009, 45(6): 1530-1535. [18] Wang Z Y, Huang L H, Zuo Y, et al. H-infinity control for uncertain system with time-delay and nonlinear external disturbance via adaptive control method. International Journal of Control Automation and Systems, 2010, 8(2): 266-271. [19] Reza B, Badamchizadeh M, Ghiasi A R. An adaptive method to parameter identification and synchronization of fractional-order chaotic systems with parameter uncertainty. Applied Mathematical Modelling, 2016, 40(7): 4468-4479. [20] Solis C U, Clempner J B, Poznyak A S. Fast terminal sliding-mode control with an integral filter applied to a van der pol oscillator. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5622-5628. [21] Zhou Y F, Zhang H, Zeng Z G. Quasi-synchronization of delayed memristive neuralnetworks via a hybrid impulsive control. IEEE Transactions on Systems Man Cybernetics-Systems, 2021, 51(3): 1954-1965. [22] Ramadge P, Wonham W. The control of discrete event system. Proceedings of the IEEE, 1989, 77(1): 81-98. [23] Heemels W P, Johansson K H, Tabuada P. An introduction to event-triggered and self-triggered control. IEEE 51st Annual Conference on Decision and Control, 2012, 51: 3270-3285. [24] 王航飞, 禹梅, 谢广明, 等. 基于事件驱动的环形编队多智能体系统. 系 统科学与数学, 2014, 34(7): 815-827. (Wang H F, Yu M, Xie G M, et al. Event-driven circle formation control for multi-agent systems. Journal of Systems Science and Mathematical Sciences, 2014, 34(7): 815-827.) [25] Heemels W P M H, Sandee J H, Bosch V D. Analysis of event-driven controllers for linear systems. International Journal of Control, 2008, 81(4): 571-590. [26] Wang X, Lemmon M D. Self-triggered feedback control systems with finite-gain L2 stability. IEEE Transactions on Automatic Control, 2009, 54(3): 452-467. [27] Dimarogonas D V, Frazzoli E, Johansson K H. Distributed event-triggered control for multi-agent systems. IEEE Transactions on Automatic Control, 2012, 57(5): 1291-1297. [28] Tallaaprogada P, Chopra N. On event triggered tracking for nonlinear systems. IEEE Transactions on Automatic Control, 2013, 58(9): 2343-2348. [29] Adaldo A, Alderisio F, Liuzza D, et al. Event-triggered pinning control of complex networks with switching topologies. IEEE Annual Conference on Decision and Control, 2014, 2783-2788. [30] Li H Q, Liao X F, Chen G, et al. Event-triggered asynchronous intermittent communication strategy for synchronization in complex dynamical networks. Neural Networks, 2015, 66: 1-10. [31] Sivaranjani K, Rakkiyappan R, Cao J D, et al. Synchronization of nonlinear singularly perturbed complex networks with uncertain inner coupling via event triggered control. Applied Mathematics and Computation, 2017, 311: 283-299. [32] Dai H, Chen W S, Jia J P, et al. Exponential synchronization of complex dynamical networks with time-varying inner coupling via event-triggered communication. Neurocomputing, 2017, 245: 124-132. [33] Shi C X, Yang G H, Li X J. Event-triggered output feedback synchronization control of complex dynamical networks. Neurocomputing, 2018, 275: 29-39. [34] Sivaranjani K, Rakkiyappan R, Joo Y H. Event triggered reliable synchronization of semi-Markovian jumping complex dynamical networks via generalized integral inequalities. Journal of the Franklin Institute-Engineering and Applied Mathematics, 2018, 355(8): 3691-3716. [35] Dai M C, Xia J W, Xia H, et al. Event-triggered passive synchronization for Markov jump neural networks subject to randomly occurring gain variations. Neurocomputing, 2019, 331: 403-411. [36] Lu W L, Li X, Rong Z H. Global stabilization of complex networks with digraph topologies via a local pinning algorithm. Automatica, 2010, 46: 116-121. [37] Fan Y, Feng G. Distributed event-triggered control of multi-agent systems with combinational measurements. Automatica, 2013, 49: 671-675. |
[1] | 何志强, 陈凤娥, 彭幸春. 均值-方差准则下保险公司带内幕信息的时间一致投资-再保险策略[J]. 系统科学与数学, 2022, 42(9): 2432-2447. |
[2] | 刘教, 王鑫, 李红超. 持续DoS攻击下多智能体系统基于观测器的一致性研究[J]. 系统科学与数学, 2022, 42(7): 1715-1726. |
[3] | 邓娅, 朱伟. 具有分布式无限通信时延的多智能体系统的领导者-跟随者一致性研究:M-矩阵方法[J]. 系统科学与数学, 2022, 42(6): 1467-1477. |
[4] | 龚平, 汪坤. 异质非线性分数阶多智能体系统的预设时间二部一致性跟踪[J]. 系统科学与数学, 2022, 42(11): 2874-2885. |
[5] | 刘瑛, 魏海燕, 魏翠萍. 一致性和特征向量驱动的个性化语义及其在稻米评价中的应用[J]. 系统科学与数学, 2022, 42(10): 2680-2697. |
[6] | 于俊燕, 贾荣波, 禹梅. 三阶多智能体系统的尺度群一致性[J]. 系统科学与数学, 2021, 41(7): 1761-1771. |
[7] | 杨鹏,杨志江. 相对表现视角下的再保险与投资策略[J]. 系统科学与数学, 2021, 41(2): 517-532. |
[8] | 晋守博,李耀红,魏章志. 基于大通讯时滞的多智能体系统的控制协议研究[J]. 系统科学与数学, 2020, 40(9): 1531-1538. |
[9] | 梁薇,王应明. 考虑群体一致性的区间犹豫模糊TOPSIS决策方法[J]. 系统科学与数学, 2020, 40(7): 1146-1156. |
[10] | 冯攀,吴笛,朱文武,都海波. 输入饱和受限的多个四旋翼飞行器分布式编队控制[J]. 系统科学与数学, 2020, 40(1): 1-14. |
[11] | 岳昊晟,余胜春,涂俐兰. 基于协整的股票相互依存网络构建及分析[J]. 系统科学与数学, 2019, 39(5): 790-803. |
[12] | 王博,田玉平. 不确定信息下的一致性问题综述[J]. 系统科学与数学, 2019, 39(2): 203-218. |
[13] | 张晓丹,刘开恩,纪志坚. 具有时变时滞多智能体系统二分一致性[J]. 系统科学与数学, 2018, 38(8): 841-851. |
[14] | 蒋衍光,黄一,薛文超,方海涛. 拟一致无迹卡尔曼滤波算法[J]. 系统科学与数学, 2017, 37(4): 965-977. |
[15] | 何英高,王翔宇. 基于二部图的多智能体系统加权分组一致性[J]. 系统科学与数学, 2017, 37(4): 1010-1020. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||