• • 上一篇    

三级OEM供应链在供需波动下的定价与批量协同决策

陈志明1, 张贵萍2, 唐龙海1   

  1. 1. 广东金融学院信用管理学院, 广州 510521;
    2. 广州新华学院管理学院, 广州 510520
  • 收稿日期:2020-07-14 修回日期:2022-01-01 发布日期:2022-12-13
  • 通讯作者: 唐龙海, Email: tlh2008@gduf.edu.cn
  • 基金资助:
    教育部人文社会科学研究项目(22YJC630012),广东省哲学社会科学规划项目(GD22XGL29),国家自然科学基金项目(71802057),广东金融学院2022年“冲补强-特色高校提升计划”应用经济学省级重点学科培育项目(No.7)资助课题.

陈志明, 张贵萍, 唐龙海. 三级OEM供应链在供需波动下的定价与批量协同决策[J]. 系统科学与数学, 2022, 42(11): 2942-2958.

CHEN Zhiming, ZHANG Guiping, TANG Longhai. Pricing and Lot-Sizing Collaborative Decisions for Three-Level OEM Supply Chain under Supply and Demand Uncertainties[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(11): 2942-2958.

Pricing and Lot-Sizing Collaborative Decisions for Three-Level OEM Supply Chain under Supply and Demand Uncertainties

CHEN Zhiming1, ZHANG Guiping2, TANG Longhai1   

  1. 1. School of Credit Management, Guangdong University of Finance, Guangzhou 510521;
    2. School of Management, Guangzhou Xinhua University, Guangzhou 510520
  • Received:2020-07-14 Revised:2022-01-01 Published:2022-12-13
随着供应链长度的延伸, 对多家企业的运营协调变得复杂.考虑一个由OEM供应商、品牌企业和零售商组成的三级供应链, 研究代工环节的产出不稳定和销售环节的需求不确定对供应链的定价、订货和生产决策的影响, 运用Stackelberg博弈求解出均衡决策结果, 提出结合缺货惩罚的收益共享契约, 通过 在上游实施缺货惩罚和在下游实施收益共享, 实现三级供应链的协调. 研究结果表 明, 代工价格超过特定的临界值时, OEM供应商会进行超额生产, 否则将采取按照 订单生产的保守策略. 供应链上游各环节的加价销售只会利己不利他, 而提升下游 定价可以实现供应链各方收益的帕累托改进. 协调机制中的惩罚价格应设置为购现价 格对外包价格的差额, 下游对上游的收益分享可视为转移支付, 可以换来上游对下游 的售价减让, 实现利润在供应链成员间的弹性分配.
The coordination of multiple companies becomes a formidable challenge with the extension of supply chain. For a three-level supply chain comprised of a contract manufacturer (CM), an original equipment manufacturer (OEM), and a retailer, we study the impacts of uncertain yield and uncertain demand on the decisions of pricing, ordering, and production. The Stackelberg game is modeled to derive the optimal decisions. A revenue sharing with shortage penalty contract is subsequently proposed to achieve the coordination of three-level supply chain. We find that there exists a threshold outsourcing price beyond which the CM is motivated to overproduce, otherwise it tends to adopt conservative strategy of producing in accordance with the order. The increase of selling price in any upstream section benefits the seller at the cost of other agents' profits. In contrast, raising price in the end of supply chain brings Pareto improvement to all agents. The coordination mechanism designed in this study enables the flexible profit distribution among all agents in supply chain. In particular, the shortage penalty should be set as the difference between selling price and outsourcing price. The revenue sharing from downstream to upstream can be viewed as the payment transfer which encourages the price reduction from upstream to downstream.

MR(2010)主题分类: 

()
[1] Yano C, Lee H. Lot sizing with random yields: A review. Operations Research, 1995, 2(43): 311-333.
[2] Grosfeld-Nir A, Gerchak Y. Multiple lot sizing in production to order with random yields: Review of recent advances. Annals of Operations Research, 2004, 1(126): 43-69.
[3] Henig M, Gerchak Y. The structure of periodic review policies in the presence of random yield. Operations Research, 1990, 38(4): 634-643.
[4] 于建红, 马士华, 周奇超. 供应量随机下基于VMI的两级装配系统协同模型. 系统科学与数学, 2011, 31(11): 1534-1549.(Yu J H, Ma S H, Zhou Q C. Collaborative model of assembly system under VMI arrangement with random yields. Journal of Systems Science and Mathematical Sciences, 2011, 31(11): 1534-1549.)
[5] Watanabe N, Kusukawa E. Optimal ordering policy in dual-sourcing supply chain considering supply disruptions and demand information. Industrial Engineering and Management Systems, 2015, 14(2): 129-158.
[6] Hsieh C C, Lai H H. Capacity allocation with differentiated product demands under dual sourcing. International Journal of Production Economics, 2017, 193: 757-769.
[7] Wang Y, Xiao Y, Yang N. Improving reliability of a shared supplier with competition and spillovers. European Journal of Operational Research, 2014, 236(2): 499-510.
[8] Huang H, Xie T. Reliability improvement and production decision under Cournot competition. International Journal of Production Research, 2015, 53(15): 4754-4768.
[9] Du H, Jiang Y. Backup or reliability improvement strategy for a manufacturer facing heterogeneous consumers in a dynamic supply chain. IEEE Access, 2019, 7: 50419-50430.
[10] Güler M G, Keskïn M E. On coordination under random yield and random demand. Expert Systems with Applications, 2013, 40(9): 3688-3695.
[11] Lin Q, Zhao Q, Lev B. Influenza vaccine supply chain coordination under uncertain supply and demand. European Journal of Operational Research, 2022, 297(3): 930-948.
[12] Chen Z, Chen C. Price negotiation and coordination in outsourcing supply chain under yield and demand uncertainties. RAIRO-Operations Research, 2021, 55(6): 3661-3675.
[13] 陈志明, 陈志祥. 供需随机的OEM供应链在风险厌恶下的协调 决策. 系统工程理论与实践, 2015, 35(5): 1123-1132. (Chen Z M, Chen Z X. Coordination in the risk-averse OEM supply chain with uncertain supply and demand. Systems Engineering — Theory & Practice, 2015, 35(5): 1123-1132.)
[14] 罗军. 随机产出随机需求下的供应链协调问题研究. 科技管理研究, 2016, 36(16): 225-230.(Luo J. Research on supply chain coordination under random yield and uncertain demand. Science and Technology Management Research, 2016, 36(16): 225-230.)
[15] 罗伟伟, 刘伟, 邵东国. 不确定环境下具有损失厌恶偏好零售商的供应链协调. 计 算机集成制造系统, 2016, 22(12): 2867-2874. (Luo W W, Liu W, Shao D G. Supply chain coordination with loss-averse retailer under yield and demand uncertainties. Computer Integrated Manufacturing Systems, 2016, 22(12): 2867-2874.)
[16] 张文杰, 骆建文. 随机产出随机需求下的供应链期权契约模型. 管理工程学报, 2016, 30(3): 121-128. (Zhang W J, Luo J W. Supply chain option contract model with random yield and stochastic demand. Journal of Industrial Engineering and Engineering Management, 2016, 30(3): 121-128.)
[17] Hu B, Feng Y. Optimization and coordination of supply chain with revenue sharing contracts and service requirement under supply and demand uncertainty. International Journal of Production Economics, 2017, 183: 185-193.
[18] Cai J, Hu X, Jiang F, et al. Optimal input quantity decisions considering commitment order contracts under yield uncertainty. International Journal of Production Economics, 2019, 216: 398-412.
[19] Chen Z, Liu F. Multi-outsourcing supply chain coordination under yield and demand uncertainties. Expert Systems with Applications, 2021, 181: 115117.
[20] He Y, Zhao X. Coordination in multi-echelon supply chain under supply and demand uncertainty. International Journal of Production Economics, 2012, 139(1): 106-115.
[21] Giri B C, Majhi J K, Bardhan S, et al. Coordinating a three-level supply chain with effort and price dependent stochastic demand under random yield. Annals of Operations Research, 2021, 307: 175-206.
[22] 朱宝琳, 戚亚萍, 戢守峰, 等. 产出和需求不确定下三级供应链契约协调 模型. 控制与决策, 2016, 31(12): 2211-2218. (Zhu B L, Qi Y P, Ji S F, et al. Three-echelon supply chain contract coordination model with uncertainties of yield and demand. Control and Decision, 2016, 31(12): 2211-2218.)
[23] 蹇明, 王永龙. 产出不确定性的三级供应链风险分担组合契约设计. 运 筹与管理, 2017, 26(7): 74-81.(Jian M, Wang Y L. Risk sharing combined contract design for three-level supply chain with output uncertainty. Operations Research and Management Science, 2017, 26(7): 74-81.)
[24] Giri B C, Bardhan S. Sub-supply chain coordination in a three-layer chain under demand uncertainty and random yield in production. International Journal of Production Economics, 2017, 191: 66-73.
[25] 冯颖, 余云龙, 张炎治, 等. 随机产出与随机需求下TPL 介入的农 产品供应链协调. 管理工程学报, 2017, 31(4): 156-163. (Feng Y, Yu Y L, Zhang Y Z, et al. Coordination of agri-products supply chain with TPL's participation under random yield and random demand. Journal of Industrial Engineering and Engineering Management, 2017, 31(4): 156-163.)
[26] Giri B C, Majhi J K, Bardhan S, et al. Coordination mechanisms of a three-layer supply chain under demand and supply risk uncertainties. RAIRO-Operations Research, 2021, 55: S2593-S2617.
[27] Lariviere M A, Porteus E L. Selling to the Newsvendor: An analysis of price-only contracts. Manufacturing & Service Operations Management, 2001, 3(4): 293-305.
[28] Bertsekas D P著. 凸优化理论. 赵千川, 王梦迪译.北京: 清 华大学出版社, 2015. (Bertsekas D P. Convex Analysis and Optimization. Eds. by Zhao Q C, Wang M D. USA: Athena Scientific, 2009.)
[1] 朱琴, 韩小花. 基于在线评论的制造商产品再制造与价格策略研究[J]. 系统科学与数学, 2022, 42(8): 2040-2061.
[2] 李红萍, 龚本刚, 党秀静, 陈久美. 基于信用保险的供应链决策模型与协调策略研究[J]. 系统科学与数学, 2022, 42(8): 2180-2197.
[3] 吴军, 巴依勒, 郝伟怡, 岳利媛. 碳标签制度下基于AT解的三级供应链收益分配研究[J]. 系统科学与数学, 2022, 42(4): 955-964.
[4] 王珊珊, 秦江涛. 政府补贴下双渠道闭环供应链回收渠道的选择研究[J]. 系统科学与数学, 2022, 42(10): 2756-2773.
[5] 吴江, 杜亚倩, 张聊东. 考虑产品绿色度的双渠道供应链博弈分析与协调[J]. 系统科学与数学, 2021, 41(8): 2276-2291.
[6] 王莹莉. 基于混合CVaR的供应链回购策略优化与协调研究[J]. 系统科学与数学, 2015, 35(11): 1304-1315.
[7] 禹海波,周端. 过度自信零售商供应链的得失共享回购契约模型[J]. 系统科学与数学, 2015, 35(1): 121-128.
[8] 梅生伟,魏韡. 智能电网环境下主从博弈模型及应用实例[J]. 系统科学与数学, 2014, 34(11): 1331-1344.
[9] 肖成勇,王谦. 供应链协调中供应商的价格歧视策略[J]. 系统科学与数学, 2013, 33(7): 785-798.
[10] 卢强,梅生伟. 现代电力系统控制评述---清华大学电力系统国家重点实验室相关科研工作缩影及展望[J]. 系统科学与数学, 2012, 32(10): 1207-1225.
[11] 肖成勇,王谦. 两层次广告博弈中供应商的一种]批发价协调策略[J]. 系统科学与数学, 2011, 31(11): 1504-1510.
[12] 李响,李勇建. 随机环境下考虑回收定价和销售定价的逆向供应链优化与协调研究[J]. 系统科学与数学, 2011, 31(11): 1511-1523.
[13] 杨丰梅, 成雅娜, 李健. 基于奖惩契约的闭环供应链协调性研究[J]. 系统科学与数学, 2011, 31(10): 1250-1258.
[14] 张海青, 田军. 采购方主导的基于能力期权契约的应急物资采购模型[J]. 系统科学与数学, 2011, 31(10): 1317-1327.
[15] 李健, 王伟, 杨丰梅. 基于三方回购契约的供应链库存调度协调研究[J]. 系统科学与数学, 2011, 31(10): 1363-1374.
阅读次数
全文


摘要