• 论文 • 上一篇    下一篇

协变量有测量误差时Tobit回归模型的估计

牛娟1,谢田发1,郭媛媛2,孙志华2,3   

  1. 1. 北 京工业大学理学部, 北京 100124; 2.中国科学院大学数学科学学院,北京 100049;3. 中国 科学院大数据挖掘与知识管理重点实验室,北京 100049
  • 出版日期:2020-09-25 发布日期:2020-11-16

牛娟,谢田发,郭媛媛,孙志华. 协变量有测量误差时Tobit回归模型的估计[J]. 系统科学与数学, 2020, 40(9): 1672-1686.

NIU Juan, XIE Tianfa, GUO Yuanyuan,SUN Zhihua. Estimation of Tobit Regression Model When Covariates Are Measured With Errors[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(9): 1672-1686.

Estimation of Tobit Regression Model When Covariates Are Measured With Errors

NIU Juan1 ,XIE Tianfa1 ,GUO Yuanyuan2 ,SUN Zhihua 2,3   

  1. 1.Faculty of Science, Beijing University of Technology, Beijing 100124; 2. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049; 3. Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100049
  • Online:2020-09-25 Published:2020-11-16

文章考虑协变量有测量误差时参数\,Tobit\,模型的估计问题.文章所提方法 不需要假定测量误差模型的结构, 不需要对测量误差变量的方差做假定, 也不需要有重复 观测的数据. 测量误差的矫正通过借助工具变量来实现. 首先利用非参数核光滑方法得到真 实观测变量的估计, 然后用这个估计替代没有观察到的真实变量来处理测量误差. 这样, 模型的回归系数就可以利用校正的最小二乘方法来估计. 文章给出了具体的算法, 证明了 回归模型的参数估计的渐近正态性. 数值模拟结果表明文章提出的校正测量误差的方法比直 接使用有测量误差数据的朴素方法有更好的有限样本性质.

In this paper, we mainly consider the estimation of the Tobit model when the covariates are measured with the errors. It is unnecessary to assume the structure of the measurement error model or the known error variance for the proposed method. At the same time, the repeated measurements data are not required. With the help of the auxiliary variable, an estimator of the true variable can be obtained by applying the local smoothing method. The true variables are replaced by their estimators and then an estimator of the regression coefficient can be defined via minimizing the corrected least squares objective function. An algorithm is presented to compute the proposed estimator and the asymptotic normality of the proposed estimator is acquired. The numerical simulation studies are conducted, which show that the proposed method performs better than the naive method. The proposed method is employed to analyze a revised real data of Duchenne Muscular Dystrophy.

()
[1] 开平安, 申忠利. 基于牛顿定律设计的无模型不确定性控制系统[J]. 系统科学与数学, 2022, 42(2): 206-223.
[2] 梁进, 周汇慧. 资产波动率为随机的信用等级迁移风险评估模型[J]. 系统科学与数学, 2022, 42(2): 304-317.
[3] 梁永玉, 田茂再. 基于分层贝叶斯时空Poisson模型的流行病建模研究[J]. 系统科学与数学, 2022, 42(2): 462-472.
[4] 张水利, 屈聪, 侯甜甜, 张晓飞. AANA样本下非参数回归模型的相合性[J]. 系统科学与数学, 2022, 42(2): 473-486.
[5] 孟杰, 杨贵军, 冯国雷, 滑梦珂. 人口总数估计:基于三系统估计量与比率估计量的组合方法[J]. 系统科学与数学, 2022, 42(1): 35-49.
[6] 蒋妍, 孟珠峰, 王天佳, 刘晓宇. 基于DCSBM模型的受访者驱动抽样调查估计量改进[J]. 系统科学与数学, 2022, 42(1): 85-99.
[7] 宗先鹏, 王彤彤. 大规模数据下子抽样模型平均估计理论[J]. 系统科学与数学, 2022, 42(1): 109-132.
[8] 王江峰, 李国定, 郦颖蕾, 熊怡. 删失指标随机缺失下条件分位数的加权双核局部线性估计[J]. 系统科学与数学, 2021, 41(9): 2621-2642.
[9] 范国良, 饶诗文, 王江峰. 缺失数据下变系数部分非线性测量误差模型的经验似然估计[J]. 系统科学与数学, 2021, 41(9): 2643-2659.
[10] 丁飞鹏. 部分线性变系数空间自回归面板模型的有效估计及应用[J]. 系统科学与数学, 2021, 41(9): 2660-2677.
[11] 何泽荣, 周楠. 基于等级结构两种群系统的最优初始分布控制[J]. 系统科学与数学, 2021, 41(8): 2063-2076.
[12] 战琛祥, 王峰. 具有Holling-II型功能性反应函数的随机捕食者-食饵模型的平稳分布[J]. 系统科学与数学, 2021, 41(8): 2137-2148.
[13] 吕丽, 金百锁. 线性模型中多变点的置信区间估计[J]. 系统科学与数学, 2021, 41(8): 2310-2326.
[14] 黄利文. 基于变量择优的Fisher逐步判别分析方法[J]. 系统科学与数学, 2021, 41(8): 2338-2348.
[15] 徐维军, 付志能, 李茂昌, 张卫国. 基于新闻文本挖掘的股指期货高频预测研究[J]. 系统科学与数学, 2021, 41(7): 1856-1875.
阅读次数
全文


摘要