• 论文 • 上一篇    

自共轭互反多项式的推广

胡建,曹喜望   

  1. 南京航空航天大学理学院, 南京 211106
  • 出版日期:2020-08-25 发布日期:2020-09-24

胡建,曹喜望. 自共轭互反多项式的推广[J]. 系统科学与数学, 2020, 40(8): 1507-1516.

HU Jian,CAO Xiwang. Generalizations of Self-Conjugate-Reciprocal Polynomials[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(8): 1507-1516.

Generalizations of Self-Conjugate-Reciprocal Polynomials

HU Jian ,CAO Xiwang   

  1. College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106
  • Online:2020-08-25 Published:2020-09-24

文章给出有限域~$ \mathbb F_{q^{2}}$上~$x^{q^{n}+1}-\lambda$~的分解和 首一不可约~$\lambda$-自共轭互反多项式的计数公式, 其中~$q$~是素数方幂, $\lambda \in \mathbb F^{*}_{q}$. 进一步, 得到了~$\mathbb F_{q^{2}}$上 ~$x^{n}+1$~的自共轭互反多项式因子的计数公式. 将此公式应用在负循环码上, ~$ \mathbb F_{q^{2}}$上 厄米特互补对偶负循环码的个数也被确定.

In this paper, we present a factorization of $x^{q^{n}+1}-\lambda$ over $\mathbb F_{q^{2}}$ and the enumeration of self-conjugate-reciprocal monic polynomials over $\mathbb F_{q^{2}}$, where $q$ is a prime power and $\lambda \in \mathbb F^{*}_{q}$. Furthermore, we propose the explicit number of monic self-conjugate-reciprocal irreducible factors of $x^{n}+1$. As an application to negacyclic codes, the number of linear Hermitian complementary dual negacyclic codes has been evaluated.

()
[1] 田诗竹,陈媛. 一类幂函数在$\mathbb{F}_{p^n}$上的差分谱[J]. 系统科学与数学, 2017, 37(5): 1351-1367.
[2] 朱喜顺,陈媛,曾祥勇. 几类特殊形式的置换多项式[J]. 系统科学与数学, 2016, 36(8): 1349-1357.
[3] 开晓山;朱士信. 环GR(4,2)上一类负循环码的Gray象[J]. 系统科学与数学, 2010, 30(3): 334-340.
[4] 高有;游宏. 特征不为2的有限域上酉群的极小生成元集[J]. 系统科学与数学, 1999, 19(1): 46-050.
阅读次数
全文


摘要