• 论文 • 上一篇    下一篇

概率犹豫模糊Maclaurin几何对称平均算子及其群决策模型

武文顺1,2,李应1,2,倪志伟1,2,朱旭辉1,2,伍章俊1,2   

  1. 1.合肥工业大学 管理学院,合肥 230009;2.过程优化与智能决策 教育部重点实验室,合肥 230009
  • 出版日期:2020-06-25 发布日期:2020-08-25

武文顺,李应,倪志伟,朱旭辉,伍章俊. 概率犹豫模糊Maclaurin几何对称平均算子及其群决策模型[J]. 系统科学与数学, 2020, 40(6): 1074-1080.

WU Wenying,LI Ying, NI Zhiwei, ZHU Xuhui,WU Zhangjun. Probabilistic Hesitant Fuzzy Maclaurin Geometric Symmetric Mean Operator and Its Group Decision Making Model[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(6): 1074-1080.

Probabilistic Hesitant Fuzzy Maclaurin Geometric Symmetric Mean Operator and Its Group Decision Making Model

WU Wenying 1,2 ,LI Ying 1,2 ,NI Zhiwei 1,2 ,ZHU Xuhui 1,2 ,WU Zhangjun 1,2   

  1. 1. School of Management, Hefei University of Technology, Hefei 230009; 2. Key Laboratory of Process Optimization and Intelligent Decision-Making, Ministry of Education, Hefei 230009
  • Online:2020-06-25 Published:2020-08-25

属性信息的集成已经成为模糊决策领域一个重要的研究课题.基于概率犹豫模糊加权Maclaurin 几何对称平均算子构建了一种新的多属性群决策算法.首先,定义了Maclaurin 几何对称平均(MGSM) 算子,并进一步将该算子引入到概率犹豫模糊环境下, 结合Archimedean范数的思想,提出了概率犹豫模糊Maclaurin 几何对称平均(PHFMGSM)算子;其次,探讨了PHFMGSM 算子具有的优良性质以及几种特殊表达形式;随后,基于提出的概率犹豫模糊加权Maclaurin几何对称平均(PHFWMGSM)算子,构建了一种新的概率犹豫模糊多属性群决策算法;最后,通过采购数据库的实例发现, PHFWMGSM 算子性质优良、计算简单、稳定性好且灵活可靠,且提出的群决策模型是更为合理有效.

Aggregation approach of attribute information is a significant research topic in fuzzy decision-making field. In this paper, a new multi-attribute group decision algorithm is constructed based on probabilistic hesitant fuzzy weighted Maclaurin geometric mean operator. Firstly, the Maclaurin geometric symmetric averaging (MGSM) operator is introduced. Under the probabilistic hesitant fuzzy environment, combing with Archimedean norm and the MGSM operator, the probabilistic hesitant fuzzy Maclaurin geometric symmetric mean (PHFMGSM) operator is proposed. Then, the excellent properties and several special forms of the PHFMGSM operator are discussed. Furthermore, a novel model of probabilistic hesitant fuzzy multi-attribute group decision making is investigated on the basis of the proposed probabilistic hesitant fuzzy weighted Maclaurin geometric symmetric mean (PHFWMGSM) operator. Finally, an example of purchasing database is provided to verify that the PHFWMGSM operator is of excellent properties, simple calculations and high stability and flexibility. In addition, the group decision model is a more reasonable and effective method.

()
[1] 张兴贤, 王应明. 一种考虑证据权重和可靠性的混合型多属性群决策方法[J]. 系统科学与数学, 2021, 41(5): 1305-1327.
[2] 张俊芳,周礼刚,金自强. 基于Pythagorean犹豫模糊熵和交叉熵的绩效评价方法[J]. 系统科学与数学, 2021, 41(2): 436-448.
[3] 傅伟锋,易志洪. 模糊语言信息集成与决策分析[J]. 系统科学与数学, 2020, 40(8): 1447-1455.
[4] 曹倩,刘小弟,张世涛,吴健. 概率信息完全未知的概率犹豫模糊多属性决策方法[J]. 系统科学与数学, 2020, 40(7): 1242-1256.
[5] 魏翠萍,葛淑娜. 犹豫模糊语言幂均算子及其在群决策中的应用[J]. 系统科学与数学, 2016, 36(8): 1308-1317.
[6] 丁若,杨然,杨鹏,徐皓. 航天工程方案决策中的改进专家权重调整算法及应用[J]. 系统科学与数学, 2016, 36(12): 2234-2241.
[7] 秦娟,陈振颂,李延来. 基于改进犹豫模糊熵的群体MULTMOORA决策方法[J]. 系统科学与数学, 2016, 36(12): 2375-2392.
[8] 周晓辉,姚俭. 基于Choquet积分的区间直觉梯形模糊多属性群决策[J]. 系统科学与数学, 2015, 35(2): 245-256.
阅读次数
全文


摘要