• 论文 •

### 带有同步变迁的有界Petri网系统的建模及可达性分析

1. 1.南开大学计算机与控制工程学院,天津  300350; 天津市智能机器人技术重点实验室,天津 300300;2.南开大学计算机与控制工程学院,天津 300350;3.南开大学计算机与控制工程学院, 天津 300350; 中国民航大学理学院, 天津  300300;4.中国民航大学理学院, 天津  300300
• 出版日期:2016-07-25 发布日期:2016-07-21

GAO Na,HAN Xiaoguang,CHEN Zengqiang,ZHANG Qing. MODELING AND REACHABILITY ANALYSIS OF BOUNDED PETRI NETS WITH SYNCHRONIZING TRANSITION[J]. Journal of Systems Science and Mathematical Sciences, 2016, 36(7): 924-936.

### MODELING AND REACHABILITY ANALYSIS OF BOUNDED PETRI NETS WITH SYNCHRONIZING TRANSITION

GAO Na ,HAN Xiaoguang , CHEN Zengqiang , ZHANG Qing

1. 1.College of Computer and Control Engineering, Nankai University, Tianjin 300350;Tianjin Key Laboratory of Intelligent Robotics, Tianjin 300350;2.College of Computer and Control Engineering, Nankai University, Tianjin 300350;3.College of Computer and Control Engineering, Nankai University, Tianjin 300350;
College of Science, Civil Aviation University of China, Tianjin 300300;4.College of Science, Civil Aviation University of China, Tianjin 300300
• Online:2016-07-25 Published:2016-07-21

The modeling and reachability problems of big petri nets are difficult to research for the state explosion problem. Using semi-tensor product (STP) of matrices, this paper investigates the problems of modeling and reachability of bounded petri nets with synchronizing transition. Firstly, this kind of petri nets can be seen as a combination of several subnets by synchronizing transitions such that we can obtain the matrix expression of these petri nets. Secondly, this paper presents a necessary and sufficient condition of reachability in terms of matrix. Based on that, an algorithm of firing transition sequence is also provided. Finally, an example is used to verify the correctness of this algorithm. The proposed method solves the problem of the state space explosion to some extent, which is easy to implement in computer.

MR(2010)主题分类:

()
 [1] 李芳菲，孙继涛. 切换布尔网络稳定性的牵制控制[J]. 系统科学与数学, 2016, 36(3): 390-398. [2] 葛美侠，赵建立，李莹. 基于添加惩罚策略的囚徒困境博弈的网络演化模型与分析[J]. 系统科学与数学, 2016, 36(11): 2041-2048. [3] 付世华，赵建立，潘金凤. 布尔网络的稳定性与镇定[J]. 系统科学与数学, 2014, 34(4): 385-391. [4] 张利军;程代展;李春文. 立体阵的一般结构[J]. 系统科学与数学, 2005, 25(4): 439-450.