• 论文 • 上一篇
蒋自国
蒋自国. 一类三次系统的广义相伴系统的定性分析[J]. 系统科学与数学, 2014, 34(7): 888-895.
JIANG Ziguo. QUALITATIVE ANALYSIS FOR A CLASS OF GENERALIZED ACCOMPANYING SYSTEM OF A CLASS OF CUBIC SYSTEM[J]. Journal of Systems Science and Mathematical Sciences, 2014, 34(7): 888-895.
JIANG Ziguo
MR(2010)主题分类:
分享此文:
[1] | 郅俊海, 陈玉福. 多项式系统焦点的轨线判定方法[J]. 系统科学与数学, 2021, 41(10): 2977-2986. |
[2] | 黄文君,王三华,张宇新. 具变动控制结构的对称广义强向量拟均衡问题及其应用[J]. 系统科学与数学, 2020, 40(6): 1037-1049. |
[3] | 杨兰军,白鹏. 正态条件下带$AR(1)$-型方差结构GMANOVA-MANOVA模型极大似然估计的小样本特征[J]. 系统科学与数学, 2020, 40(1): 156-170. |
[4] | 王能发,杨哲. 一类新广义博弈的均衡存在性[J]. 系统科学与数学, 2018, 38(5): 613-622. |
[5] | 傅金波,陈兰荪. 一类具有相互干扰的食饵-捕食者模型的定性分析[J]. 系统科学与数学, 2017, 37(4): 1166-1178. |
[6] | 何志龙,聂麟飞. 具有状态依赖脉冲控制的害虫管理SI模型的动力学性质[J]. 系统科学与数学, 2017, 37(11): 2163-2177. |
[7] | 桑波. 两类一致等时系统的小振幅极限环分支[J]. 系统科学与数学, 2016, 36(5): 728-735. |
[8] | 贾光钰,冯俊娥. 三种单节点摄动对混合值逻辑网络极限集的影响[J]. 系统科学与数学, 2016, 36(3): 426-436. |
[9] | 赵学艳,邓飞其,杨启贵. 基于局部 Lipschitz 条件的非线性 It{\^o} 随机微分方程的基本理论[J]. 系统科学与数学, 2016, 36(12): 2164-2171. |
[10] | 孙树林,尹辉. 具有不同时滞的捕食者-食饵恒化器模型的定性分析[J]. 系统科学与数学, 2016, 36(12): 2454-2472. |
[11] | 桑波. 不变代数曲线与一类三次系统的中心判定问题[J]. 系统科学与数学, 2015, 35(5): 611-616. |
[12] | 孙树林,尹辉. 一类具有连续输入互补型营养基的捕食者-食饵恒化器模型[J]. 系统科学与数学, 2014, 34(8): 960-968. |
[13] | 杨哲,蒲勇健. 单主多从博弈中中级社会Nash均衡的存在性与应用[J]. 系统科学与数学, 2013, 33(7): 777-784. |
[14] | 姚庆六. 奇异三阶广义右聚焦边值问题的正解[J]. 系统科学与数学, 2013, 33(4): 480-487. |
[15] | 周辉,周宗福. 中立型泛函微分方程$\bm S^{\bm p}$权伪概自守温和解[J]. 系统科学与数学, 2013, 33(4): 488-495. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||