A CLASS OF TYPE K MONOTONE INTEGRODIFFERENTIAL EQUATIONS
HU SHI-GENG
Author information+
Department ot Mathematics,Huazhong University of Science and Technology,Wuhan 430073
{{custom_zuoZheDiZhi}}
{{custom_authorNodes}}
{{custom_bio.content}}
{{custom_bio.content}}
{{custom_authorNodes}}
Collapse
文章历史+
收稿日期
修回日期
出版日期
1900-01-01
1900-01-01
1991-10-25
发布日期
1991-10-25
摘要
的框架内能得到更好的阐明.如 Smith 所指明的,当 f 满足一定的单调性条件时,(3)的解有一些良好的性质,且可在一定程度上应用 Hirsch 的“单调流”理论.我们在[4]中发展了[8]的工作,得出了(3)全局渐近稳定的某种充分条件.本文将[4,8]中的方法应用于方程(1)的研究,所得之主要结果(定理1,2)阐明了:当μ满足一定条件时,方程(1)具有某种意义的全局稳定性.我们的结果特别可用于某些微分差分方程...
Abstract
In this paper we consider integro-differential equations of the form\dot{x}(t)=diag(x(t)){a+diag(b)x(t)+integral from -r to 0[dμ(s)]x(t+s)}.Under certain monotonicity hypotheses,we prove that the solutions,in some region,of such an equation converge to a unique equilibrium state.
HU SHI-GENG. , {{custom_author.name_en}}.
A CLASS OF TYPE K MONOTONE INTEGRODIFFERENTIAL EQUATIONS. Journal of Systems Science and Mathematical Sciences, 1991, 11(4): 320-326 https://doi.org/10.12341/jssms08630