A HOMOCLINIC ORBIT FOR LAGRANGIAN SYSTEMS

WU Shaoping

Journal of Systems Science & Complexity ›› 1995, Vol. 8 ›› Issue (1) : 75-081.

PDF(302 KB)
PDF(302 KB)
Journal of Systems Science & Complexity ›› 1995, Vol. 8 ›› Issue (1) : 75-081.
article

A HOMOCLINIC ORBIT FOR LAGRANGIAN SYSTEMS

  • WU Shaoping
Author information +
History +

Abstract

We prove the existence of a homoclinic orbit for Lagrangian system (LS) where the Lagrallgian L(t,x,y)=1/2 \sum a_ij(x)y_iy_j-V(t,x). A similar argument to Rabinowitz[5] is used, where a_ij (x) is an identity matrix. Now the differential equation is quasilinear and more estimates are needed to get the uniform bound for the second derivative of periodic sequence {x_k(t)} with period 2kT.

Key words

Homoclinic orbit / Lagrangian system / Mountain Pass Lemma

Cite this article

Download Citations
WU Shaoping. A HOMOCLINIC ORBIT FOR LAGRANGIAN SYSTEMS. Journal of Systems Science and Complexity, 1995, 8(1): 75-081
PDF(302 KB)

119

Accesses

0

Citation

Detail

Sections
Recommended

/