Self-Dual Hadamard Bent Sequence

SHI Minjia, LI Yaya, CHENG Wei, CRNKOVIĆ Dean, KROTOV Denis, SOLÉ Patrick

Journal of Systems Science & Complexity ›› 2023, Vol. 36 ›› Issue (2) : 894-908.

PDF(238 KB)
PDF(238 KB)
Journal of Systems Science & Complexity ›› 2023, Vol. 36 ›› Issue (2) : 894-908. DOI: 10.1007/s11424-023-2276-8

Self-Dual Hadamard Bent Sequence

Author information +
History +

Abstract

A new notion of bent sequence related to Hadamard matrices was introduced recently, motivated by a security application (Solé, et al., 2021). The authors study the self-dual class in length at most 196. The authors use three competing methods of generation: Exhaustion, Linear Algebra and Gröbner bases. Regular Hadamard matrices and Bush-type Hadamard matrices provide many examples. The authors conjecture that if v is an even perfect square, a self-dual bent sequence of length v always exists. The authors introduce the strong automorphism group of Hadamard matrices, which acts on their associated self-dual bent sequences. The authors give an efficient algorithm to compute that group.

Key words

Bent sequences / bush-type Hadamard matrices / Hadamard matrices / PUF functions / regular Hadamard matrices

Cite this article

Download Citations
SHI Minjia , LI Yaya , CHENG Wei , CRNKOVIĆ Dean , KROTOV Denis , SOLÉ Patrick. Self-Dual Hadamard Bent Sequence. Journal of Systems Science and Complexity, 2023, 36(2): 894-908 https://doi.org/10.1007/s11424-023-2276-8

References

[1] Mesnager S, Bent Functions, Fundamentals and Results, Springer, Cham, 2016.
[2] Tokareva N, Bent Functions. Results and Applications to Cryptography, Elsevier/Academic Press, Amsterdam, 2015.
[3] Solé P, Cheng W, Guilley S, et al., Bent sequences over Hadamard codes for physically unclonable functions, IEEE International Symposium on Information Theory, Melbourne, Australia, 2021, 801-806.
[4] MacWilliams F J and Sloane N J A, The Theory of Error-Correcting Codes, North Holland, Amsterdam, Netherlands, 1977.
[5] Carlet C, Danielsen L E, Parker M G, et al., Self-dual bent functions, Int. J. Inf. Coding Theory, 2010, 1(4):384-399.
[6] Kharaghani H, On the twin designs with the Ionin-type parameters, Electr. J. Comb., 2000, 7(#R1(1-11):2000.
[7] Horadam K J, Hadamard Matrices and Their Applications, Princeton University Press, Princeton, NJ, 2007.
[8] Wallis W D, Street A P, and Wallis J S, Combinatorics:Room Squares, Sum-Free Sets, Hadamard Matrices, Ser. Lect. Notes Math. Springer-Verlag, Berlin, 1972, 292.
[9] Bush K A, Unbalanced Hadamard matrices and finite projective planes of even order, J. Comb. Theory, Ser. A, 1971, 11(1):38-44.
[10] Hall M Jr, Note on the mathieu group M12, Arch. Math., 1962, 13:334-340.
[11] Crnković D, Egan R, and Svob A, Orbit matrices of Hadamard matrices and related codes, Discrete Math., 2018, 341(5):1199-1209.
[12] de Launey W and Flannery D, Algebraic Design Theory, Ser. Math. Surv. Monogr., American Mathematical Society (AMS), Providence, RI, 2011.
[13] Kantor W M, Automorphism groups of Hadamard matrices, J. Comb. Theory, 1969, 6(3):279-281.
[14] de Launey W and Stafford R M, On the automorphisms of Paley's type II Hadamard matrix, Discrete Math., 2008, 308(13):2910-2924.
[15] Janusz G J, Parametrization of self-dual codes by orthogonal matrices, Finite Fields Appl., 2007, 13(3):450-491.
[16] Kutsenko A, The group of automorphisms of the set of self-dual bent functions, Cryptogr. Commun., 2020, (5):881-898.
[17] Feulner T, Sok L, Solé P, et al., Towards the classification of self-dual bent functions in eight variables, Des. Codes Cryptography, 2013, 68(1-3):395-406.
[18] Crnković D, A series of regular Hadamard matrices, Des. Codes Cryptography, 2006, 39(2):247-251.
[19] Leung K H, Ma S L, and Schmidt B, New Hadamard matrices of order 4p2 obtained from Jacobi sums of order 16, J. Comb. Theory, Ser. A, 2006, 113(5):822-838.
[20] Biggs N, Algebraic Graph Theory, Ser. Camb. Tracts Math., Cambridge University Press, Cambridge, 1974, Vol. 67.
[21] Bosma W, Cannon J J, Fieker C, et al., Handbook of Magma functions, Edition 2.16, 2010.
[22] Beth T, Jungnickel D, and Lenz H, Design Theory. Vol. I., Ser. Encycl. Math. Appl., Cambridge University Press, Cambridge, 1999.
[23] Kotsireas I S, Koukouvinos C, and Seberry J, Hadamard ideals and Hadamard matrices with circulant core, J. Comb. Math. Comb. Comput., 2006, 57:47-63.
[24] Adams W W and Loustaunau P, An Introduction to Gröbner Bases, Graduate Studies in Mathematics, 1994.
[25] Caminata A and Gorla E, Solving multivariate polynomial systems and an invariant from commutative algebra, International Workshop on the Arithmetic of Finite Fields, Springer, Cham, 2020, 12542:3-36.
[26] Janko Z, The existence of a Bush-type Hadamard matrix of order 36 and two new infinite classes of symmetric designs, J. Comb. Theory, Ser. A, 2001, 95(2):360-364.
[27] Janko Z and Kharaghani H, A block negacyclic Bush-type Hadamard matrix and two strongly regular graphs, J. Comb. Theory, Ser. A, 2002, 98(1):118-126.
[28] Crnković D and Pavčević M-O, Some new symmetric designs with parameters (64, 28, 12), Discrete Math., 2001, 237(1-3):109-118.
[29] Pavčević M-O, Symmetric designs of Menon series admitting an action of Frobenius groups, Glas. Mat., III. Ser., 1996, 31(2):209-223.
[30] Crnković D, A construction of some symmetric (144, 66, 30) designs, J. Appl. Algebra Discrete Struct, 2007, 5(1):33-39.
[31] Crnković D, A construction of some symmetric designs with parameters (196, 91, 42), Int. Math. Forum, 2007, 2(61-64):3021-3026.
[32] Delvaux J, Peeters R, and Gu D, Verbauwhede I, A survey on lightweight entity authentication with strong PUFs, ACM Comput. Surv., 2015, 48(2):1-42.
[33] Shamsoshoara A, Korenda A, Afghah F, et al., A survey on physical unclonable function (PUF)-based security solutions for Internet of Things, Computer Networks, 2020, 183:107593.
[34] Rioul O, Solé P, Guilley S, et al., On the entropy of physically unclonable functions, IEEE International Symposium on Information Theory, Barcelona, Spain, 2016, 2928-2932.
[35] Crnković D and Svob A, Switching for 2-designs, Des. Codes Cryptography, 2022, 90:1585-1593.
[36] Janko Z, Kharaghani H, and Tonchev V D, Bush-type Hadamard matrices and symmetric designs, J. Comb. Des., 2001, 9(1):72-78.
[37] Crnković D, Some new Menon designs with parameters (196, 91, 42), Math. Commun., 2005, 10(2):169-175.

Funding

This work is supported in part by the National Natural Science Foundation of China under Grant No. 12071001.
PDF(238 KB)

140

Accesses

0

Citation

3

Altmetric

Detail

Sections
Recommended

/