Statistical Inference of Partially Linear Spatial Autoregressive Model Under Constraint Conditions

LI Tizheng, CHENG Yaoyao

Journal of Systems Science & Complexity ›› 2023, Vol. 36 ›› Issue (6) : 2624-2660.

PDF(434 KB)
PDF(434 KB)
Journal of Systems Science & Complexity ›› 2023, Vol. 36 ›› Issue (6) : 2624-2660. DOI: 10.1007/s11424-023-2222-9

Statistical Inference of Partially Linear Spatial Autoregressive Model Under Constraint Conditions

  • LI Tizheng, CHENG Yaoyao
Author information +
History +

Abstract

In many application fields of regression analysis, prior information about how explanatory variables affect response variable of interest is often available and can be formulated as constraints on regression coefficients. In this paper, the authors consider statistical inference of partially linear spatial autoregressive model under constraint conditions. By combining series approximation method, twostage least squares method and Lagrange multiplier method, the authors obtain constrained estimators of the parameters and function in the partially linear spatial autoregressive model and investigate their asymptotic properties. Furthermore, the authors propose a testing method to check whether the parameters in the parametric component of the partially linear spatial autoregressive model satisfy linear constraint conditions, and derive asymptotic distributions of the resulting test statistic under both null and alternative hypotheses. Simulation results show that the proposed constrained estimators have better finite sample performance than the unconstrained estimators and the proposed testing method performs well in finite samples. Furthermore, a real example is provided to illustrate the application of the proposed estimation and testing methods.

Key words

Constraint conditions / partially linear spatial autoregressive model / series estimation / spatial correlation / two-stage least squares

Cite this article

Download Citations
LI Tizheng , CHENG Yaoyao. Statistical Inference of Partially Linear Spatial Autoregressive Model Under Constraint Conditions. Journal of Systems Science and Complexity, 2023, 36(6): 2624-2660 https://doi.org/10.1007/s11424-023-2222-9

References

[1] Su L J and Jin S N, Profile quasi-maximum likelihood estimation of partially linear spatial autoregressive models, J. Econometrics, 2010, 157:18-33.
[2] Li K M and Chen J B, Profile maximum likelihood estimation of semi-parametric varying coefficient spatial lag model, J. Quant. Tech. Econom., 2013, 4:85-98.
[3] Sun Y, Yan H J, Zhang W Y, et al., A semiparametric spatial dynamic model, Ann. Statist., 2014, 42:700-727.
[4] Malikov E and Sun Y G, Semiparametric estimation and testing of smooth coefficient spatial autoregressive models, J. Econometrics, 2017, 199:12-34.
[5] Hoshino T, Semiparametric spatial autoregressive models with endogenous regressors:With an application to crime data, J. Bus. Econom. Statist., 2018, 36:160-172.
[6] Wei C H, Guo S, and Zhai S F, Statistical inference of partially linear varying coefficient spatial autoregressive models, Econ. Model., 2017, 64:553-559.
[7] Sun Y Q, Zhang Y Q, and Huang J H, Estimation of a semi-parametric varying coefficient mixed regressive spatial autoregressive model, Econ. Stat., 2019, 9:140-155.
[8] Luo G W, Wu M X, and Pang Z, Empirical likelihood inference for the semiparametric varyingcoefficient spatial autoregressive model, Journal of Systems Science & Comlexity, 2021, 34(6):2310-2333.
[9] Sun Y, Estimation of single-index model with spatial interaction, Reg. Sci. Urban. Econ., 2017, 62:36-45.
[10] Sun Y and Wu Y Q, Estimation and testing for a partially linear single-index spatial regression model, Spatial Econ. Anal., 2018, 13:473-489.
[11] Cheng S L and Chen J B, Estimation of partially linear single-index spatial autoregressive model, Statist. Papers, 2021, 62:495-531.
[12] Du J, Sun X Q, Cao R Y, et al., Statistical inference for partially linear additive spatial autoregressive models, Spat. Stat., 2018, 25:52-67.
[13] Zhang Z Y, A pairwise difference estimator for partially linear spatial autoregressive models, Spatial. Econ. Anal., 2013, 8:176-194.
[14] Chen J Q, Wang R F, and Huang Y X, Semiparametric spatial autoregressive model:A two-step Bayesian approach, J. Ann. Public Health Res., 2015, 2:1-12.
[15] Zhang Y Q and Yang G R, Statistical inference of partially specified spatial autoregressive model, Acta Math. Sin. Engl. Ser., 2015, 31:1-16.
[16] Koch M and Krisztin T, Applications for asynchronous multi-agent teams in nonlinear applied spatial econometrics, J. Int. Tech., 2011, 12:1007-1014.
[17] Krisztin T, The determinants of regional freight transport:A spatial, semiparametric approach, Geographical Anal., 2017, 49:268-308.
[18] Li T Z and Mei C L, Testing a polynomial relationship of the non-parametric component in partially linear spatial autoregressive models, Pap. Reg. Sci., 2013, 92:633-649.
[19] Li T Z and Mei C L, Statistical inference on the parametric component in partially linear spatial autoregressive models, Comm. Statist. Simulation Comput., 2016, 45:1991-2006.
[20] Li T Z and Guo Y, Penalized profile quasi-maximum likelihood method of partially linear spatial autoregressive model, J. Stat. Comput. Simul., 2020, 90:2705-2740.
[21] Zhao P X, Gan H G, Cheng S L, et al., Orthogonality based penalized GMM estimation for variable selection in partially linear spatial autoregressive models, Comm. Statist. Theory Methods, 2023, 52:1676-1691.
[22] Zhang Y Q and Sun Y Q, Estimation of partially specified dynamic spatial panel data models with fixed-effects, Reg. Sci. Urban Econ., 2015, 51:37-46.
[23] Zhang Y Q and Yang G R, Estimation of partially specified spatial panel data models with random-effects, Acta. Math. Sin. Engl. Ser., 2015, 31:456-478.
[24] Ai C R and Zhang Y Q, Estimation of partially specified spatial panel data models with fixedeffects, Econometric Rev., 2017, 36:6-22.
[25] Li T Z and Kang X J, Variable selection of higher-order partially linear spatial autoregressive model with a diverging number of parameters, Statist. Papers, 2022, 63:243-285.
[26] Kang X J and Li T Z, Estimation and testing of high-order partially linear spatial autoregressive model, J. Stat. Comput. Simul., 2022, 92:3167-3201.
[27] Fang H B, Tian G L, Xiong X P, et al., A multivariate random-effects model with restricted parameters:Application to assessing radiation therapy for brain tumours, Stat. Med., 2006, 25:1948-1959.
[28] Knopov P S and Korkhin A S, Regression Analysis Under a Priori Parameter Restrictions, Springer, New York, 2011.
[29] Carroll R J, Delaigle A, and Hall P, Testing and estimating shape-constrained nonparametric density and regression in the presence of measurement error, J. Amer. Statist. Assoc., 2011, 106:191-202.
[30] Royset J O and Wets R J, Fusion of hard and soft information in nonparametric density estimation, European J. Oper. Res., 2015, 247:532-547.
[31] James G M, Paulson C, and Rusmevichientong P, Penalized and constrained optimization:An application to high-dimensional website advertising, J. Amer. Statist. Assoc., 2020, 115:107-122.
[32] Zhang W W, Li G R, and Xue L G, Profile inference on partially linear varying-coefficient errorsin-variables models under restricted condition, Comput. Statist. Data Anal., 2011, 55:3027-3040.
[33] Wei C H, Statistical inference for restricted partially linear varying coefficient errors-in-variables models, J. Statist. Plann. Inference, 2012, 142:2464-2472.
[34] Wei C H and Wang Q H, Statistical inference on restricted partially linear additive errors-invariables models, Test, 2012, 21:757-774.
[35] Feng S Y and Xue L G, Bias-corrected statistical inference for partially linear varying coefficient errors-in-variables models with restricted condition, Ann. Inst. Stat. Math., 2014, 66:121-140.
[36] Shi J H and Zhao F R, Statistical inference for heteroscedastic semi-varying coefficient EV models under restricted condition, Statist. Papers, 2018, 59:487-511.
[37] Zhang W W and Li G R, Weighted bias-corrected restricted statistical inference for heteroscedastic semiparametric varying-coefficient errors-in-variables model, J. Korean Stat. Soc., 2021, 50:1098- 1128.
[38] Luo G W and Wu M X, Statistical inference for semiparametric varying-coefficient spatial autoregressive models under restricted conditions, Comm. Statist. Simulation Comput., 2022, 51:2268-2286.
[39] Kelejian H H and Prucha I R, A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances, J. Real Estate Finance Econ., 1998, 17:99-121.
[40] Lee L F, Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models, Econometrica, 2004, 72:1899-1925.
[41] Lin X and Lee L F, GMM estimation of spatial autoregressive models with unknown heteroskedasticity, J. Econometrics, 2010, 157:34-52.
[42] Su L J, Semiparametric GMM estimation of spatial autoregressive models, J. Econometrics, 2012, 167:543-560.
[43] Newey W K, Convergence rates and asymptotic normality for series estimators, J. Econometrics, 1997, 79:147-168.
[44] Harrison D and Rubinfeld D L, Hedonic housing prices and the demand for clean air, J. Environ. Econ. Manage., 1978, 5:81-102.
[45] Pace R K and Gilley O W, Using the spatial configuration of the data to improve estimation, J. Real Estate Finance Econ., 1997, 14:333-340.
[46] Lesage J P and Pace R K, Introduction to Spatial Econometrics, CRC, Boca Raton, 2009.
[47] Liu X, Chen J B, and Cheng S L, A penalized quasi-maximum likelihood method for variable selection in the spatial autoregressive model, Spat. Statist., 2018, 25:86-104.
[48] Xie T F, Cao R Y, and Du J, Variable selection for spatial autoregressive models with a diverging number of parameters, Statist. Papers, 2020, 61:1125-1145.
[49] Fan J Q and Huang T, Profile likelihood inferences on semiparametric varying-coefficient partially linear models, Bernoulli, 2005, 11:1031-1057.
[50] Cai Z W and Xu X P, Nonparametric quantile estimations for dynamic smooth coefficient models, J. Amer. Statist. Assoc., 2008, 103:1595-1608.
[51] Li D K, Mei C L, and Wang N, Tests for spatial dependence and heterogeneity in spatially autoregressive varying coefficient models with application to Boston house price analysis, Reg. Sci. Urban Econ., 2019, 79:103470.
[52] Zhang H H, Cheng G, and Liu Y F, Linear or nonlinear? Automatic structure discovery for partially linear models, J. Amer. Statist. Assoc., 2011, 106:1099-1112.
[53] Kong E and Xia Y C, A single-index quantile regression model and its estimation, Econometric Theory, 2012, 28:730-768.

Funding

This research was supported by the Natural Science Foundation of Shaanxi Province under Grant No. 2021JM349 and the Natural Science Foundation of China under Grant Nos. 11972273 and 52170172.
PDF(434 KB)

152

Accesses

0

Citation

Detail

Sections
Recommended

/