DEHBI Lydia1,2, ZENG Zhenbing2
[1] Brass P, Moser W, and Pach J, Research Problems in Discrete Geometry, Springer Science & Business Media, Berlin, 2006. [2] Bertram-Kretzberg C, Hofmeister T, and Lefmann H, An algorithm for Heilbronn’s problem, SIAM Journal on Computing, 2000, 30(2): 383–390. [3] Roth K, On a problem of Heilbronn, Journal of the London Mathematical Society, 1951, 1(3): 198–204. [4] Roth K, On a problem of Heilbronn, ii, Proceedings of the London Mathematical Society, 1972, 3(2): 193–212. [5] Roth K, On a problem of Heilbronn, iii, Proceedings of the London Mathematical Society, 1972, 3(3): 543–549. [6] Schmidt W, On a problem of Heilbronn, Journal of the London Mathematical Society, 1972, 2(3): 545–550. [7] Komlós J, Pintz J, and Szemerédi E, On Heilbronn’s triangle problem, Journal of the London Mathematical Society, 1981, 2(3): 385–396. [8] Komlós J, Pintz J, and Szemerédi E, A lower bound for Heilbronn’s problem, Journal of the London Mathematical Society, 1982, 2(1): 13–24. [9] Roth K, Developments in Heilbronn’s triangle problem, Advances in Mathematics, 1976, 22(3): 364–385. [10] Goldberg M, Maximizing the smallest triangle made by n points in a square, Mathematics Magazine, 1972, 45(3): 135–144. [11] Comellas F and Yebra J, New lower bounds for Heilbronn numbers, The Electronic Journal of Combinatorics, 2002, R6. [12] Friedman E, The Heilbronn problem for squares, Accessed on October 15, 2022, https://erichfriedman.github.io/packing/heilbronn/. [13] Tal A and Barequet G, Algorithms for Heilbronn’s triangle problem, PhD thesis, Computer Science Department, Technion, 2009. [14] Yang L, Zhang J, and Zeng Z, Heilbronn problem for five points, Technical report, International Centre for Theoretical Physics, 1991. [15] Yang L, Zhang J, and Zeng Z, On goldbergs conjecture: Computing the first several Heilbronn numbers, Technical report, Universitat Bielefeld, 1991. [16] Yang L, Zhang J, and Zeng Z, On the conjecture and computing for exact values of the first several Heilbronn numbers, Chin. Ann. Math. (A), 1992, 13(4): 503–515. [17] Zeng Z and Chen L, On the Heilbronn optimal configuration of seven points in the square, International Workshop on Automated Deduction in Geometry, Springer, 2008, 196–224. [18] Barequet G, A lower bound for Heilbronn’s triangle problem in d dimensions, SIAM Journal on Discrete Mathematics, 2001, 14(2): 230–236. [19] Barequet G, The on-line Heilbronn’s triangle problem, Discrete Mathematics, 2004, 283(1–3): 7–14. [20] Barequet G and Shaikhet A, The on-line Heilbronn’s triangle problem in d dimensions, Discrete & Computational Geometry, 2007, 38(1): 51–60. [21] Jiang T, Li M, and Vitányi P, The average-case area of Heilbronn-type triangles, Random Structures & Algorithms, 2002, 20(2): 206–219. [22] Yang L, Zhang J, and Zeng Z, On the first several Heilbronn numbers of a triangle, Acta Mathematica Sinica, Chinese Series, 1994, 37(5): 678–689. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||