Previous Articles Next Articles
LIU Yu'an1, XIA Jianwei2, WANG Jing3, SHEN Hao3
[1] Bao L, Fei S, and Yu L, Exponential stability of linear distributed parameter switched systems with time-delay, Journal of Systems Science & Complexity, 2014, 27(2): 263–275. [2] Zong G D and Zhao H J, Input-to-state stability of switched nonlinear delay systems based on a novel Lyapunov-Krasovskii functional method, Journal of Systems Science & Complexity, 2018, 31(4): 875–888. [3] Liang H, Liu G, Zhang H, et al., Neural-network-based event-triggered adaptive control of nonaffine nonlinear multi-agent systems with dynamic uncertainties, IEEE Trans. Neural Netw. and Learn. Syst., 2021, 32(5): 2239–2250. [4] Shi K B, Tang Y Y, Liu X Z, et al., Secondary delay-partition approach on robust performance analysis for uncertain time-varying Lurie nonlinear control system, Opt. Control Appl. Methods, 2017, 38(6): 1208–1226. [5] Shi K B, Tang Y Y, Liu X Z, et al., Non-fragile sampled-data robust synchronization of uncertain delayed chaotic Lurie systems with randomly occurring controller gain fluctuation, ISA Transactions, 2017, 66: 185–199. [6] Jiao S Y, Xia J W, Wang Z, et al., An improved result on stability analysis of delayed load frequency control power systems, Int. J. Control, Automation and Systems, 2021, 19: 1633– 1639. [7] Wang Y, Chen F, Zhuang G, et al., Dynamic event-based mixed H∞ and dissipative asynchronous control for Markov jump singularly perturbed systems, Appl. Math. Comput., 2020, 386: 125443. [8] Shen H, Ru T, Xia J, et al., Finite-time energy-to-peak quantized filtering for Markov jump networked systems under weighted try-once-discard protoco, Int. J. Robust & Nonlinear Control, 2021, 31(10): 4951–4964. [9] Cheng P, He S P, Luan X L, et al., Finite-region asynchronous H∞ control for 2D Markov jump systems, Automatica, 2021, 129: 109590. [10] Ren C C, He S P, Luan X L, et al., Finite-time L2-gain asynchronous control for continuous-time positive hidden Markov jump systems via T-S fuzzy model approach, IEEE Trans. Cybern., 2021, 51(1): 77–87. [11] Li Y M, Li K W, and Tong S C, Adaptive neural network finite-time control for multi-input and multi-output nonlinear systems with the powers of odd rational numbers, IEEE Trans. Netw. Learn. Syst., 2020, 31(7): 2532–2543. [12] Li H, Wang J, Lam H K, et al., Adaptive sliding mode control for interval type-2 fuzzy systems, IEEE Trans. Syst. Man Cybernet. Syst., 2016, 46(12): 1654–1663. [13] Li H, Shi P, Yao D, et al., Observer-based adaptive sliding mode control for nonlinear Markovian jump systems, Automatica, 2016, 64: 133–142. [14] Yang Y, Chen F, Lang J, et al., Sliding mode control of persistent dwell-time switched systems with random data dropouts, Appl. Math. Comput., 2021, 400: 126087. [15] Wang J, Yang Y, Xia J W, et al., Coding-decoding-based sliding mode control for networked persistent dwell-time switched systems, Int. J. Robust & Nonlinear Control, 2021, 31(2): 6055– 6068. [16] Song J, Niu Y, and Zou Y, Finite-time stabilization via sliding mode control, IEEE Trans. Automat. Control, 2017, 62(3): 1478–1483. [17] Wang J, Ru T, Xia J, et al., Asynchronous event-triggered sliding mode control for semi-Markov jump systems within a finite-time interval, IEEE Trans. Circuits Syst. I, 2021, 68(1): 458–468. [18] Qi W, Zong G, and Karimi H R, Finite-time observer-based sliding mode control for quantized semi-Markov switching systems with application, IEEE Trans. Industrial Informat., 2020, 16(2): 1259–1271. [19] Nie R, He S P, Liu F, et al., Sliding mode controller design for conic-type nonlinear semiMarkovian jumping systems of time-delayed Chua’s circuit, IEEE Trans. Syst. Man Cybernet. Syst., 2021, 51(4): 2467–2475. [20] Li X H, Lu D K, Zhang W, et al., Sensor fault estimation and fault-tolerant control for a class of Takagi-Sugeno M arkovian jump systems with partially unknown transition rates based on the reduced-order observer, Journal of Systems Science & Complexity, 2018, 31(6): 1405–1422. [21] Xie X P, Zhou Q, Yue D, et al., Relaxed control design of discrete-time Takagi–Sugeno fuzzy systems: An event-triggered real-time scheduling approach, IEEE Trans. Syst. Man Cybernet. Syst., 2018, 48(12): 2251–2262. [22] Liang H J, Guo X Y, Pan Y N, et al., Event-triggered fuzzy bipartite tracking control for network systems based on distributed reduced-order observers, IEEE Trans. Fuzzy Syst., 2021, 29(6): 1601–1614. [23] Zhao T and Dian S Y, Fuzzy static output feedback H∞ control for nonlinear systems subject to parameter uncertainties, Journal of Systems Science & Complexity, 2018, 31(2): 343–371. [24] Tong S C, Min X, and Li Y X, Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions, IEEE Trans. Cybern., 2020, 50(9): 3903– 3913. [25] Xia J W, Lian Y X, Su S F, et al., Observer-based event-triggered adaptive fuzzy control for unmeasured stochastic nonlinear systems with unknown control directions, IEEE Trans. Cybern., 2021, DOI: 10.1109/TCYB.2021.3069853. [26] Xia J W, Chen G L, Park J H, et al., Dissipativity-based sampled-data control for fuzzy switched Markovian jump systems, IEEE Trans. Fuzzy Syst., 2021, 29(6): 1325–1339. [27] Shi K, Wang J, Zhong S, et al., Non-fragile memory filtering of T-S fuzzy delayed neural networks based on switched fuzzy sampled-data control, Fuzzy Sets Syst., 2020, 394: 40–64. [28] Wang J, Huang Z G, Wu Z G, et,al., Extended dissipative control for singularly perturbed PDT switched systems and its application, IEEE Trans. Circuits Syst. I, Reg. Papers, 2020, 67(12): 5281–5289. [29] Wang J, Yang C Y, Xia J W, et al., Observer-based sliding mode control for networked fuzzy singularly perturbed systems under weighted try-once-discard protocol, IEEE Trans. Fuzzy Syst., 2021, DOI: 10.1109/TFUZZ.2021.3070125. [30] Wang X L, Yu Y, Cai J, et al., Dynamic pinning synchronization of fuzzy-dependent-switched coupled memristive neural networks with mismatched dimensions on time scales, IEEE Trans. Fuzzy Syst., 2020, DOI: 10.1109/TFUZZ.2020.3048576. [31] Wang J, Wang X L, Xie N, et al., Fuzzy-model-based H∞ pinning synchronization for coupled neural networks subject to reaction-diffusion, IEEE Trans. Fuzzy Syst., 2020, DOI: 10.1109/TFUZZ.2020.3036697. [32] Shi K B, Tang Y Y, Zhong S, et al., Nonfragile asynchronous control for uncertain chaotic Lurie network systems with Bernoulli stochastic process, Int. J. Robust & Nonlinear Control, 2018, 28(5): 1693–1714. [33] Wang Y, Hu X H, Shi K B, et al., Network-based passive estimation for switched complex dynamical networks under persistent dwell-time with limited signals, J. Franklin Inst., 2020, 357(15): 10921–10936. [34] Shi K B, Wang J, Tang Y Y, et al., Reliable asynchronous sampled-data filtering of T-S fuzzy uncertain delayed neural networks with stochastic switched topologies, Fuzzy Sets and Sys., 2020, 381: 1–25. [35] Wang J, Zhang Y G, Su L, et al., Fuzzy-model-based l2-l∞ filtering for discrete-time semiMarkov jump nonlinear systems using semi-Markov kernel, IEEE Trans. Fuzzy Syst., 2021, DOI: 10.1109/TFUZZ.2021.3078832. [36] Wang J, Xia J W, Shen H, et al., Synchronization for fuzzy Markov jump chaotic systems with piecewise-constant transition probabilities subject to PDT switching rule, IEEE Trans. Fuzzy Syst., 2020, DOI: 10.1109/TFUZZ.2020.3012761. [37] Shen H, Dai M, Luo Y, et al., Fault-tolerant fuzzy control for semi-Markov jump nonlinear systems subject to incomplete SMK and actuator failures, IEEE Trans. Fuzzy Syst., 2020, DOI: 10.1109/TFUZZ.2020.3011760. [38] Xie W, Zeng Y, Shi K, et al., Hybrid event-triggered filtering for nonlinear Markov jump systems with stochastic cyber-attacks, IEEE Access, 2020, 381: 40–64. [39] Lam H K and Seneviratne L D, Stability analysis of interval type-2 fuzzy-model-based control systems, IEEE Trans. Syst. Man Cybernet. Part B, 2008, 38(3): 617–628. [40] Li H, Yin S, Pan Y, et al., Model reduction for interval type-2 Takagi–Sugeno fuzzy systems, Automatica, 2015, 61: 308–314. [41] Liu X, Xia J, Wang J, et al., Interval type-2 fuzzy passive filtering for nonlinear singularly perturbed PDT-switched systems and its application, Journal of Systems Science & Complexity, 2021, 34(6): 2195–2218. [42] Kavikumar R, Sakthivel R, Kwon O, et al., Finite-time boundedness of interval type-2 fuzzy systems with time delay and actuator faults, J. Franklin Inst., 2019, 356(15): 8296–8324. [43] Jiang B, Karimi H R, Kao Y, et al., Takagi-Sugeno model-based sliding mode observer design for finite-time synthesis of semi-Markovian jump systems, IEEE Trans. Syst. Man Cybernet. Syst., 2019, 49(7): 1505–1515. [44] Zhang Z, Niu Y, Karimi H R, Sliding mode control of interval type-2 fuzzy systems under roundrobin scheduling protocol, IEEE Trans. Syst. Man Cybernet. Syst., 2019, DOI: 10.1109/ TSMC.2019.2956714. [45] Zhang Z, Niu Y, and Song J, Input-to-state stabilization of interval type-2 fuzzy systems subject to cyberattacks: An observer-based adaptive sliding mode approach, IEEE Trans. Fuzzy Syst., 2020, 28(1): 190–203. [46] Peng C, Ma S, and Xie X, Observer-based non-PDC control for networked T-S fuzzy systems with an event-triggered communication, IEEE Trans. Cybern., 2017, 47(8): 2279–2287. [47] Xue M, Tang Y, Wu L, et al., Switching stabilization for type-2 fuzzy systems with networkinduced packet losses, IEEE Trans. Cybern., 2019, 49(7): 2591–2604. [48] Cao Z, Niu Y, and Song J, Finite-time sliding-mode control of Markovian jump cyber-physical systems against randomly occurring injection attacks, IEEE Trans. Automat. Control, 2020, 65(3): 1264–1271. [49] Liu Y, Guo B Z, Park J H, et al., Nonfragile exponential synchronization of delayed complex dynamical networks with memory sampled-data control, IEEE Trans. Neural Netw. and Learn. Syst., 2018, 29(1): 118–128. [50] Wang D, Chen F, Meng B, et al., Event-based secure H∞ load frequency control for delayed power systems subject to deception attacks, Appl. Math. Comput., 2021, 394: 125788. [51] Wang J, Liu X, Xia J, et al., Quantized interval type-2 fuzzy control for persistent dwelltime switched nonlinear systems with singular perturbations, IEEE Trans. Cybern., 2021, DOI: 10.1109/ TCYB.2021.3049459. |
[1] | LIU Xinmiao · XIA Jianwei · WANG Jing · SHEN Hao. Interval Type-2 Fuzzy Passive Filtering for Nonlinear Singularly Perturbed PDT-Switched Systems and Its Application [J]. Journal of Systems Science and Complexity, 2021, 34(6): 2195-2218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||