Previous Articles Next Articles
ZHAO Shishun1, DONG Lijian1, SUN Jianguo2
ZHAO Shishun, DONG Lijian, SUN Jianguo. Regression Analysis of Interval-Censored Data with Informative Observation Times Under the Accelerated Failure Time Model[J]. Journal of Systems Science and Complexity, 2022, 35(4): 1520-1534.
[1] Chen C, Lu T, Chen M, et al., Semiparametric transformation models for current status data with informative censoring, Biometrical Journal, 2012, 54(5): 641-656. [2] Finkelstein D, A proportional hazards model for interval-censored failure time data, Biometrics, 1986, 42: 845-854. [3] Huang J, Efficient estimation for the proportional hazards model with interval censoring, The Annals of Statistics, 1996, 24(2): 540-568. [4] Sun J, The Statistical Analysis of Interval-Censored Failure Time Data, Springer Science & Business Media, New York, 2006. [5] Finkelstein D and Wolfe R, A semiparametric model for regression analysis of interval-censored failure time data, Biometrics, 1985, 41: 933-945. [6] Zeng D, Cai J, and Shen Y, Semiparametric additive risks model for interval-censored data, Statistica Sinica, 2006, 16: 287-302. [7] Wang L, McMahan C, Hudgens M, et al., A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data, Biometrics, 2016, 72(1): 222-231. [8] Zeng D, Mao L, and Lin D, Maximum likelihood estimation for semiparametric transformation models with interval-censored data, Biometrika, 2016, 103(2): 253-271. [9] Zhou Q, Hu T, and Sun J, A sieve semiparametric maximum likelihood approach for regression analysis of bivariate interval-censored failure time data, Journal of the American Statistical Association, 2017, 112(518): 664-672. [10] Zeng D, Gao F, and Lin D, Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data, Biometrika, 2017, 104(3): 505-525. [11] Huang X and Wolfe R, A frailty model for informative censoring, Biometrics, 2002, 58: 510-520. [12] Zhang Z, Sun L, Sun J, et al., Regression analysis of failure time data with informative interval censoring, Statistics in Medicine, 2007, 26: 2533-2546. [13] Wang P, Zhao H, and Sun J, Regression analysis of case K interval-censored failure time data in the presence of informative censoring, Biometrics, 2016, 72(4): 1103-1112. [14] Ma L, Hu T, and Sun J, Cox regression analysis of dependent interval-censored failure time data, Computational Statistics and Data Analysis, 2016, 103: 79-90. [15] Zhao S, Hu T, Ma L, et al., Regression analysis of interval-censored failure time data with the additive hazards model in the presence of informative censoring, Statistics and Its Interface, 2015, 8(3): 367-377. [16] Xu D, Zhao S, Hu T, et al., Regression analysis of informatively interval-censored failure time data with semiparametric linear transformation model, Journal of Nonparametric Statistics, 2019, 31(3): 663-679. [17] Lin D, Wei L, and Ying Z, Accelerated failure time models for counting processes, Biometrika, 1998, 85(3): 605-618. [18] Jin Z, Lin D, Wei L, et al., Rank-based inference for the accelerated failure time model, Biometrika, 2003, 90(2): 341-353. [19] Zeng D and Lin D, Efficient estimation for the accelerated failure time model, Journal of the American Statistical Association, 2007, 102(480): 1387-1396. [20] Rabinowitz D, Tsiatis A, and Aragon J, Regression with interval-censored data, Biometrika, 1995, 82(3): 501-513. [21] Betensky R, Rabinowitz D, and Tsiatis A, Computationally simple accelerated failure time regression for interval censored data, Biometrika, 2001, 88: 703-711. [22] Nelsen R, An Introduction to Copulas, Springer Science and Business Media, New York, 2006. [23] Lu M, Zhang Y, and Huang J, Estimation of the mean function with panel count data using monotone polynomial splines, Biometrika, 2007, 94(3): 705-718. [24] Schumaker L, Spline Functions: Basic Theory, Cambridge University Press, Cambridge, 2007. [25] Murphy S and Vaart A, On profile likelihood, Journal of the American Statistical Association, 2000, 95(450): 449-465. |
[1] | Ximing CHENG , Li LUO. VARIABLE SELECTION FOR RECURRENT EVENT DATA WITH INFORMATIVE CENSORING [J]. Journal of Systems Science and Complexity, 2012, 25(5): 987-997. |
[2] | SHI Peide;ZHENG Zhongguo. MUCLTIVARIATE RESISTANT REGRESSION SPLINES FOR ESTIMATING MULTIVARIATE FUNCTIONS FROM NOISY DATA [J]. Journal of Systems Science and Complexity, 1997, 10(3): 217-224. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||