BIFURCATIONS FROM HOMOCLINIC ORBITS FOR SECOND ORDER HAMILTONIAN SYSTEM

WU Shaoping;YANG Haitao

系统科学与复杂性(英文) ›› 1998, Vol. 11 ›› Issue (1) : 47-052.

PDF(284 KB)
PDF(284 KB)
系统科学与复杂性(英文) ›› 1998, Vol. 11 ›› Issue (1) : 47-052.
论文

BIFURCATIONS FROM HOMOCLINIC ORBITS FOR SECOND ORDER HAMILTONIAN SYSTEM

    WU Shaoping(1);YANG Haitao(2)
作者信息 +

BIFURCATIONS FROM HOMOCLINIC ORBITS FOR SECOND ORDER HAMILTONIAN SYSTEM

    WU Shaoping(1);YANG Haitao(2)
Author information +
文章历史 +

摘要

An existence theorem of homoclinic orbit is given for second order Hamiltonian system -\"{x}(t) + a(t)x(t) - W_x(t, x(t)) = \lambda x(t) when \lambda=\lambda_1, where \lambda_1 is the first eigenvalue of operator Lx = \"{x} - a(t)x, and W_x(t, x) is sublinear growth in x \in R^n. When W_x(t, x) is odd in x, infinitely many distinct pairs of homoclinic orbits are obtained and the bifurcations occur for each \lambda\leq \lambda_1.

Abstract

An existence theorem of homoclinic orbit is given for second order Hamiltonian system -\"{x}(t) + a(t)x(t) - W_x(t, x(t)) = \lambda x(t) when \lambda=\lambda_1, where \lambda_1 is the first eigenvalue of operator Lx = \"{x} - a(t)x, and W_x(t, x) is sublinear growth in x \in R^n. When W_x(t, x) is odd in x, infinitely many distinct pairs of homoclinic orbits are obtained and the bifurcations occur for each \lambda\leq \lambda_1.

关键词

Bifurcations / homoclinic orbit / Hamilton

Key words

Bifurcations / homoclinic orbit / Hamiltonian system / variational method

引用本文

导出引用
WU Shaoping , YANG Haitao. BIFURCATIONS FROM HOMOCLINIC ORBITS FOR SECOND ORDER HAMILTONIAN SYSTEM. 系统科学与复杂性(英文), 1998, 11(1): 47-052
WU Shaoping , YANG Haitao. BIFURCATIONS FROM HOMOCLINIC ORBITS FOR SECOND ORDER HAMILTONIAN SYSTEM. Journal of Systems Science and Complexity, 1998, 11(1): 47-052
PDF(284 KB)

132

Accesses

0

Citation

Detail

段落导航
相关文章

/