LINEAR COMPLEXITY AND RANDOM SEQUENCES WITH PERIOD 2~n
Zhang Zhaozhi(1);Yang Yixian(2)
作者信息+
(1)Institute of Systems Science,Academia Sinica,Beijing,China;(2)Beijing University of Posts & Telecommunications,Beijing,China
{{custom_zuoZheDiZhi}}
{{custom_authorNodes}}
{{custom_bio.content}}
{{custom_bio.content}}
{{custom_authorNodes}}
折叠
LINEAR COMPLEXITY AND RANDOM SEQUENCES WITH PERIOD 2~n
Zhang Zhaozhi(1);Yang Yixian(2)
Author information+
(1)Institute of Systems Science,Academia Sinica,Beijing,China;(2)Beijing University of Posts & Telecommunications,Beijing,China
{{custom_zuoZheDiZhi}}
{{custom_authorNodes}}
{{custom_bio.content}}
{{custom_bio.content}}
{{custom_authorNodes}}
Collapse
文章历史+
收稿日期
修回日期
出版日期
1900-01-01
1900-01-01
1990-05-15
发布日期
1990-05-15
摘要
Let \underline{S}=(S,S,…) be a binary random sequence with period N=2~n, where S=(S_0,…,S_(N-1)) is its one period with N independent and uniformly distributed binary random variables. The main results of this paper are as follows.
1)Var c(\underline{S})=2-(2N+1)2~(-N)-2~(-2N);2)E|c(\underline{S})-c(\underline{S}+\underline{b})|=[2~(c(\underline{b})+1)-2]2~(-N)for any sequence \underline{b} with period 2~n;3)N-1+2~(-N)-(n/2+1-2~(-(N-n)))≤E[c(\underline{S}+\underline{b})]≤N-1+2~(-N)4)2-2~(-(N-1))≤E[\[min_{W(b)\le 1}\|c(\underline{S})-c(\underline{S}+\underline{b})|]≤2-2~(-N)+n/2-2~(-(N-n)), where E and Var stand for taking expectation and variance respectively, c(\underline{b}) is the linearcomplexity of the sequence \underline{b} and W(b) the Hamming weight of one period of the seqnence \underline{b}.
Abstract
Let \underline{S}=(S,S,…) be a binary random sequence with period N=2~n, where S=(S_0,…,S_(N-1)) is its one period with N independent and uniformly distributed binary random variables. The main results of this paper are as follows.
1)Var c(\underline{S})=2-(2N+1)2~(-N)-2~(-2N);2)E|c(\underline{S})-c(\underline{S}+\underline{b})|=[2~(c(\underline{b})+1)-2]2~(-N)for any sequence \underline{b} with period 2~n;3)N-1+2~(-N)-(n/2+1-2~(-(N-n)))≤E[c(\underline{S}+\underline{b})]≤N-1+2~(-N)4)2-2~(-(N-1))≤E[\[min_{W(b)\le 1}\|c(\underline{S})-c(\underline{S}+\underline{b})|]≤2-2~(-N)+n/2-2~(-(N-n)), where E and Var stand for taking expectation and variance respectively, c(\underline{b}) is the linearcomplexity of the sequence \underline{b} and W(b) the Hamming weight of one period of the seqnence \underline{b}.
Zhang Zhaozhi
, Yang Yixian. , {{custom_author.name_cn}}.
LINEAR COMPLEXITY AND RANDOM SEQUENCES WITH PERIOD 2~n. 系统科学与复杂性(英文), 1990, 3(2): 136-142
Zhang Zhaozhi
, Yang Yixian. , {{custom_author.name_en}}.
LINEAR COMPLEXITY AND RANDOM SEQUENCES WITH PERIOD 2~n. Journal of Systems Science and Complexity, 1990, 3(2): 136-142