ON THE NONEXISTENCE OF NONTRIVIAL SMALL CYCLES OF THE μ FUNCTION IN 3x+1 CONJECTURE

Dengguo FENG, Xiubin FAN , Liping DING ,Zhangyi WANG

系统科学与复杂性(英文) ›› 2012, Vol. 25 ›› Issue (6) : 1215-1222.

PDF(165 KB)
PDF(165 KB)
系统科学与复杂性(英文) ›› 2012, Vol. 25 ›› Issue (6) : 1215-1222. DOI: 10.1007/s11424-012-0280-5

ON THE NONEXISTENCE OF NONTRIVIAL SMALL CYCLES OF THE μ FUNCTION IN 3x+1 CONJECTURE

    Dengguo FENG1, Xiubin FAN1 , Liping DING2 ,Zhangyi WANG2
作者信息 +

ON THE NONEXISTENCE OF NONTRIVIAL SMALL CYCLES OF THE μ FUNCTION IN 3x+1 CONJECTURE

    Dengguo FENG1, Xiubin FAN1 , Liping DING2 ,Zhangyi WANG2
Author information +
文章历史 +

Abstract

This paper studies the property of the recursive sequences in the 3x + 1 conjecture. The authors introduce the concept of μ function, with which the 3x+1 conjecture can be transformed into two other conjectures: one is eventually periodic conjecture of the μ function and the other is periodic point conjecture. The authors prove that the 3x + 1 conjecture is equivalent to the two conjectures above. In 2007, J. L. Simons proved the non-existence of nontrivial 2-cycle for the T function. In this paper, the authors prove that the μ function has no l-periodic points for 2 ≤ l ≤ 12. In 2005, J. L. Simons and B. M. M de Weger proved that there is no nontrivial l-cycle for the T function for  l ≤ 68, and in this paper, the authors prove that there is no nontrivial l-cycle for the μ function for 2 ≤ l ≤ 102.

引用本文

导出引用
Dengguo FENG, Xiubin FAN , Liping DING ,Zhangyi WANG. ON THE NONEXISTENCE OF NONTRIVIAL SMALL CYCLES OF THE μ FUNCTION IN 3x+1 CONJECTURE. 系统科学与复杂性(英文), 2012, 25(6): 1215-1222 https://doi.org/10.1007/s11424-012-0280-5
Dengguo FENG, Xiubin FAN , Liping DING ,Zhangyi WANG. ON THE NONEXISTENCE OF NONTRIVIAL SMALL CYCLES OF THE μ FUNCTION IN 3x+1 CONJECTURE. Journal of Systems Science and Complexity, 2012, 25(6): 1215-1222 https://doi.org/10.1007/s11424-012-0280-5
PDF(165 KB)

178

Accesses

0

Citation

Detail

段落导航
相关文章

/